in this paper, using the fixed point and direct methods, we prove the generalized hyers-ulam-rassias stability of the following cauchy-jensen additive functional equation: begin{equation}label{main} fleft(frac{x+y+z}{2}right)+fleft(frac{x-y+z}{2}right)=f(x)+f(z)end{equation} in various normed spaces. the concept of hyers-ulam-rassias stability originated from th. m. rassias’ stability theorem t...