نتایج جستجو برای: gaussian radial basis functions

تعداد نتایج: 958526  

1996
Norbert Jankowski

The most common transfer functions in neural networks are of the sigmoidal type. In this article other transfer functions are considered. Advantages of simple gaussians, giving hyperelliptical densities, and gaussian bar functions (sums of one-dimensional gaussians) are discussed. Bi-radial functions are formed from products of two sigmoids. Product of M bi-radial functions in N -dimensional pa...

2007
R. Tanner D. G. M. Cruickshank

This paper presents a receiver lter, based on V olterra functions, for a direct-sequence code-division-multiple-access (DS-CDMA) system. The envisaged application would be cellular tele-phony, where the receiver will be required to be adaptive due to changes to the channel characteristics. The results obtained from the V olterra lter are compared against the linear minimum-mean-square-error (MM...

2006
OREN E. LIVNE GRADY B. WRIGHT

Abstract. Radial basis functions (RBFs) are a powerful tool for interpolating/approximating multidimensional scattered data. Notwithstanding, RBFs pose computational challenges, such as the efficient evaluation of an n-center RBF expansion at m points. A direct summation requires O(nm) operations. We present a new multilevel method whose cost is only O((n + m) ln(1/δ)), where δ is the desired a...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سیستان و بلوچستان 1389

بروز سیلاب های سهمگین در اثر تغییرات آب و هوایی طی دهه های اخیر سبب بروز خسارات فراوانی در نواحی مختلف دنیا شده است. در نواحی خشک تأثیر این تغییرات محسوس تر است. در این بین استان سیستان و بلوچستان با آب و هوای گرم و خشک، مستعد وقوع سیل می باشد. بطوریکه بزرگترین سیلاب های کشور در این منطقه بوقوع پیوسته است. حوضه آبریز سرباز که در قسمت های جنوبی این استان پهناور قرار گرفته، متأثر از شرایط موجود، ...

1997
Kimmo Raivio Ari Hämäläinen Jukka Henriksson Olli Simula

Real communication channels with multipath propagation, interference and possible nonlinearities pose a difficult problem to the detecting receiver. This paper deals with neural approaches to solve those difficulties. Two types of neural networks, self-organizing map and radial basis functions have been studied. The results show that, while there are no actual benefits in using neural receivers...

1999
Jörg C. Lemm

Nonparametric Bayesian approaches based on Gaussian processes have recently become popular in the empirical learning community. They encompass many classical methods of statistics, like Radial Basis Functions or various splines, and are technically convenient because Gaussian integrals can be calculated analytically. Restricting to Gaussian processes, however, forbids for example the implementi...

2010
A. Allison D. Abbott C. E. M. Pearce

We derive approximate numerical solutions for an ordinary differential equation common in engineering using two different types of basis functions, polynomial and Gaussian, and a maximum discrepancy error measure. We compare speed and accuracy of the two solutions. The basic finding for our example is that while Gaussian basis functions can be used, the computational effort is greater than that...

2017
Kurt Cutajar Edwin V. Bonilla Pietro Michiardi Maurizio Filippone

Random Feature Expansions for Deep Gaussian Processes Kurt Cutajar 1 Edwin V. Bonilla 2 Pietro Michiardi 1 Maurizio Filippone 1 A. Additional Experiments Using the experimental set-up described in Section 4, Figure 1 demonstrates how the competing models perform with regards to the RMSE (or error rate) and MNLL metric when two hidden layers are incorporated into the competing models. The result...

2010
Meihong Wang Fei Sha Michael I. Jordan

We start by noting that conditional independence X ⊥ Y |B⊤X does not necessarily imply the correlation between BX and Y is maximized. To see this, let X be a Gaussian random vairable with zero mean and diagonal covariance matrix. AssumeB is an identity matrix and Y = X = (BX) (elementwise square for a vectorial X). The conditional independence is obviously satisfied yet the correlation between ...

2007
Sunsern Cheamanunkul

We examine advantages of using smooth basis functions in classifying fMRI (functional MR Imaging) data. fMRI data is a measurement of neural activity in the brain. It allows us to see how each part of the brain responses to stimuli. The task in which we are interested is to identify mental states from some given fMRI data. Specifically, we want to classify between two different states using lab...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید