نتایج جستجو برای: kutta
تعداد نتایج: 4374 فیلتر نتایج به سال:
An optimized explicit low-storage fourth-order Runge–Kutta algorithm is proposed in the present work for time integration. Dispersion and dissipation of the scheme are minimized in the Fourier space over a large range of frequencies for linear operators while enforcing a wide stability range. The scheme remains of order four with nonlinear operators thanks to the low-storage algorithm. Linear a...
Abstract In this paper, third-order 3-stage diagonally implicit Runge–Kutta–Nystrom method embedded in fourthorder 4-stage for solving special second-order initial value problems is constructed. The method has the property of minimized local truncation error as well as the last row of the coefficient matrix is equal to the vector output. The stability of the method is investigated and a standar...
Based on First Same As Last (FSAL) technique, an embedded trigonometrically-fitted Two Derivative Runge-Kutta method (TDRK) for the numerical solution of first order Initial Value Problems (IVPs) is developed. Using the trigonometrically-fitting technique, an embedded 5(4) pair explicit fifth-order TDRK method with a “small” principal local truncation error coefficient is derived. The numerical...
The paper presents an adaptation of numerical solution of first order linear differential equation in fuzzy environment. The numerical method is re-established and studied with fuzzy concept to estimate its uncertain parameters whose values are not precisely known. Demonstrations of fuzzy solutions of the governing methods are carried out by the approaches, namely Modified Runge Kutta method an...
Strong stability preserving (SSP) high order time discretizations were developed for solution of semi-discrete method of lines approximations of hyperbolic partial differential equations. These high order time discretization methods preserve the strong stability properties–in any norm or seminorm—of the spatial discretization coupled with first order Euler time stepping. This paper describes th...
The application of Runge-Kutta schemes designed to enjoy a large region of absolute stability can significantly increase the efficiency of numerical methods for PDEs based on a method of lines approach. In this work we investigate the improvement in the efficiency of the time integration of relaxation schemes for degenerate diffusion problems, using SSP Runge-Kutta schemes and computing the max...
We apply Patankar Runge–Kutta methods to y′ = M(y)y and focus on the case where M(y) is a graph Laplacian as resulting scheme will preserve positivity total mass. The second order Heun method tested using four test problems (stiff non-stiff) cast into this form. local error estimated step size chosen adaptively. Concerning accuracy efficiency, results are comparable those obtained with traditio...
In this short note we show how to obtain Lagrangian integrators from known sym-plectic partitioned Runge-Kutta methods.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید