نتایج جستجو برای: lattice valued semiuniform convergence spaces
تعداد نتایج: 363105 فیلتر نتایج به سال:
in this paper, several $delta$ and strong convergence theorems are established for the ishikawa iterations for nonexpansive mappings in the framework of cat(0) spaces. our results extend and improve the corresponding results
in this note we first redefine the notion of a fuzzy hypervectorspace (see [1]) and then introduce some further concepts of fuzzy hypervectorspaces, such as fuzzy convex and balance fuzzy subsets in fuzzy hypervectorspaces over valued fields. finally, we briefly discuss on the convex (balanced)hull of a given fuzzy set of a hypervector space.
The work of interval arithmetic was originally introduced by Dwyer [3] in 1951. The development of interval arithmetic as a formal system and evidence of its value as a computational device was provided by Moore [15] and Moore and Yang [16]. Furthermore, Moore and others [3]; [4]; [10] and [17] have developed applications to differential equations. Chiao in [2] introduced sequence of interval n...
We study an Ishikawa type algorithm for two multi-valued quasinonexpansive maps on a special class of nonlinear spaces namely hyperbolic metric spaces; in particular, strong and 4−convergence theorems for the proposed algorithms are established in a uniformly convex hyperbolic space which improve and extend the corresponding known results in uniformly convex Banach spaces. Our new results are a...
Covariance structure plays an important role in high dimensional statistical inference. In a range of applications including imaging analysis and fMRI studies, random variables are observed on a lattice graph. In such a setting it is important to account for the lattice structure when estimating the covariance operator. In this paper we consider both minimax and adaptive estimation of the covar...
We introduce the notions of L(H)-valued norms and Banach spaces with respect to L(H)-valued norms. In particular, we introduce Hilbert spaces with respect to L(H)-valued inner products. In addition, we provide several fundamental examples of Hilbert spaces with respect to L(H)-valued inner products.
Using the notion of formal ball, we present a few new results in the theory of quasi-metric spaces. With no specific order: every continuous Yoneda-complete quasi-metric space is sober and convergence Choquet-complete hence Baire in its d-Scott topology; for standard quasi-metric spaces, algebraicity is equivalent to having enough center points; on a standard quasi-metric space, every lower sem...
Convergence of Two Simple Methods for Solving Monotone Inclusion Problems in Reflexive Banach Spaces
We propose two very simple methods, the first one with constant step sizes and second self-adaptive sizes, for finding a zero of sum monotone operators in real reflexive Banach spaces. Our methods require only evaluation single-valued operator at each iteration. Weak convergence results are obtained when set-valued is maximal Lipschitz continuous, strong either these required, addition, to be s...
This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید