نتایج جستجو برای: learning experts

تعداد نتایج: 658884  

2017
Daniel D. Johnson Robert M. Keller Nicholas Weintraut

We describe a neural network architecture designed to learn the musical structure of jazz melodies over chord progressions, then to create new melodies over arbitrary chord progressions from the resulting connectome (representation of neural network structure). Our architecture consists of two sub-networks, the interval expert and the chord expert, each being LSTM (long short-term memory) recur...

2010
Gao Tang Kris Hauser

This paper proposes a discontinuity-sensitive approach to learn the solutions of parametric optimal control problems with high accuracy. Many tasks, ranging from model predictive control to reinforcement learning, may be solved by learning optimal solutions as a function of problem parameters. However, nonconvexity, discrete homotopy classes, and control switching cause discontinuity in the par...

Journal: :Neural computation 1999
Ran Avnimelech Nathan Intrator

We present a new supervised learning procedure for ensemble machines, in which outputs of predictors, trained on different distributions, are combined by a dynamic classifier combination model. This procedure may be viewed as either a version of mixture of experts (Jacobs, Jordan, Nowlan, & Hintnon, 1991), applied to classification, or a variant of the boosting algorithm (Schapire, 1990). As a ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس 1387

چکیده تمام نما مقدمه: این تحقیق برای بررسی میزان خلاقیت و عناصر آن (انعطاف- سیالی- ابتکار و بسط) در کارشناسان فوق برنامه های تربیت بدنی دانشگاههای تهران صورت گرفته است. بطور کلی خلاقیت به معنای توانایی تولید اندیشه ها و ایده های جدید و ترکیب آنها با یکدیگر و بیشتر در جنبه های فکری نظری و به اصطلاح فعالیتهای ذهنی و طراحی قبل از عمل به کار می رود و دارای چهار عنصر به شرح زیر می باشد. 1- سیالی...

Journal: :مدیریت فرهنگ سازمانی 0
سمیه زراعت کار دکتری مدیریت دولتی، پردیس فارابی، دانشگاه تهران، قم، ایران قنبر محمدی الیاسی دانشیار، دانشگاه تهران، ایران حسن زارعی متین استاد، پردیس فارابی دانشگاه تهران، ایران سید مهدی الوانی استاد، دانشگاه علامه طباطبایی، تهران، ایران محمدعلی بابایی دانشیار، دانشگاه الزهرا (س)، تهران، ایران

based on the research findings, managers use of informal learning practices in order to develop competencies and improve their performance. however, these concerns have not been studied so far in the iranian business environment. the aim of this study is to identify informal learning methods of human resource managers. after a three-stage coding have been identified seven categories and twenty-...

Journal: :Journal of Theoretical Biology 2006

Journal: :CoRR 2013
David Eigen Marc'Aurelio Ranzato Ilya Sutskever

Mixtures of Experts combine the outputs of several “expert” networks, each of which specializes in a different part of the input space. This is achieved by training a “gating” network that maps each input to a distribution over the experts. Such models show promise for building larger networks that are still cheap to compute at test time, and more parallelizable at training time. In this this w...

2014
Jay Young Nick Hawes

We investigate the problem of learning the control of small groups of units in combat situations in Real Time Strategy (RTS) games. AI systems may acquire such skills by observing and learning from expert players, or other AI systems performing those tasks. However, access to training data may be limited, and representations based on metric information – position, velocity, orientation etc. – m...

Journal: :Psychological review 2004
Michael L Kalish Stephan Lewandowsky John K Kruschke

Knowledge partitioning is a theoretical construct holding that knowledge is not always integrated and homogeneous but may be separated into independent parcels containing mutually contradictory information. Knowledge partitioning has been observed in research on expertise, categorization, and function learning. This article presents a theory of function learning (the population of linear expert...

2008
Giovanni Montana Francesco Parrella

Support vector regression (SVR) is an established non-linear regression technique that has been successfully applied to a variety of predictive problems arising in computational finance, such as forecasting asset returns and volatilities. In real-time applications with streaming data two major issues that need particular care are the inefficiency of batch-mode learning, and the arduous task of ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید