نتایج جستجو برای: legendre pseudospectral method

تعداد نتایج: 1632786  

2015
Emad M. Solouma Mohamed M. Khader E. M. Solouma M. M. Khader

This paper is devoted to implementing the Legendre spectral collocation method to introduce numerical solutions of a certain class of fractional variational problems (FVPs). The properties of the Legendre polynomials and Rayleigh-Ritz method are used to reduce the FVPs to the solution of system of algebraic equations. Also, we study the convergence analysis. The obtained numerical results show ...

2016
H. SABERI NAJAFI H. AMINIKHAH

In this paper, continuous Legendre multi-wavelets are utilized as a basis in a practical direct method to approximate the solutions of the Fredholm integral equations system. To begin with we describe the characteristic of Legendre multi-wavelets and will go on to indicate that through this method a system of Fredholm integral equations can be reduced to an algebraic equation. Finally, numerica...

2011
S. A. Yousefi

Abstract: In this article a numerical method is proposed to approximate the solution of the system of integrodifferential equations describing biological species living together. The method is based upon Legendre multiwavelet approximations. The properties of Legendre multiwavelet are first presented. These properties together with Ritz-Galerkin method are then utilized to reduce the equations ...

Journal: :SIAM Journal on Optimization 2008
Adrian S. Lewis C. H. Jeffrey Pang

The -pseudospectrum of a square matrix A is the set of eigenvalues attainable when A is perturbed by matrices of spectral norm not greater than . The pseudospectral abscissa is the largest real part of such an eigenvalue, and the pseudospectral radius is the largest absolute value of such an eigenvalue. We find conditions for the pseudospectrum to be Lipschitz continuous in the setvalued sense ...

2005
Geoffrey T. Huntington Anil V. Rao

The problem of determining minimum-fuel maneuver sequences for a four-spacecraft formation is considered. The objective of this paper is to determine fuel-optimal configuration trajectories that transfer a four spacecraft formation from an initial parking orbit to a desired terminal reference orbit while satisfying particular formation constraints. In this paper, the configuration problem is so...

Journal: :SIAM J. Numerical Analysis 2005
M. S. Min D. Gottlieb

Consider a model eigenvalue problem with a piecewise constant coefficient. We split the domain at the discontinuity of the coefficient function and define the multidomain variational formulation for the eigenproblem. The discrete multidomain variational formulations are defined for Legendre–Galerkin and Legendre-collocation methods. The spectral rate of convergence of the approximate eigensolut...

Journal: :Graphical Models 2000
Huazhong Shu Limin Luo Xu Dong Bao Wenxue Yu Guo-Niu Han

The two-dimensional (2D) and three-dimensional (3D) orthogonal moments are useful tools for 2D and 3D object recognition and image analysis. However, the problem of computation of orthogonal moments has not been well solved because there exist few algorithms that can efficiently reduce the computational complexity. As is well known, the calculation of 2D and 3D orthogonal moments by a straightf...

Journal: :Multiscale Modeling & Simulation 2015
Lexing Ying

This paper introduces the sparsifying preconditioner for the pseudospectral approximation of highly indefinite systems on periodic structures, which include the frequency-domain response problems of the Helmholtz equation and the Schrödinger equation as examples. This approach transforms the dense system of the pseudospectral discretization approximately into a sparse system via an equivalent i...

2015
A. H. BHRAWY M. A. ZAKY D. BALEANU

Burgers’ equation is a fundamental partial differential equation in fluid mechanics. This paper reports a new space-time spectral algorithm for obtaining an approximate solution for the space-time fractional Burgers’ equation (FBE) based on spectral shifted Legendre collocation (SLC) method in combination with the shifted Legendre operational matrix of fractional derivatives. The fractional der...

Journal: :iranian journal of science and technology (sciences) 2015
h. kocayigit

in this paper, we give some characterizations for legendre spherical, legendre normal and legendre rectifying curves in the 3-dimensional sasakian space. furthermore, we show that legendre spherical curves are also legendre normal curves. in particular, we prove that the inverse of curvature of a legendre rectifying curve is a non-constant linear function of the arclength parameter.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید