نتایج جستجو برای: lie

تعداد نتایج: 45774  

M. Shahryari

In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.

G. Yildiz O. Z. Okuyucu,

In this paper, we study inextensible ows in three dimensional Lie groups with a bi-invariant metric. The necessary and sucient conditions for inextensible curve ow are expressed as a partial dierential equation involving the curvatures. Also, we give some results for special cases of Lie groups.

2005

A Lie group is, roughly speaking, an analytic manifold with a group structure such that the group operations are analytic. Lie groups arise in a natural way as transformation groups of geometric objects. For example, the group of all affine transformations of a connected manifold with an affine connection and the group of all isometries of a pseudo-Riemannian manifold are known to be Lie groups...

M. bakhtiari, R. Mirzaei

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

2011
QIZHEN HE

The goal of this paper is to study Lie groups, specifically matrix groups. We will begin by introducing two examples: GLn(R) and SLn(R). Then in each section we will prove basic results about our two examples and then generalize these results to general matrix groups.

Journal: :Journal of Geometry and Physics 2007

Journal: :Kyushu Journal of Mathematics 2014

‎In this paper‎, ‎we introduce the structure of a groupoid associated to a vector field‎ ‎on a smooth manifold‎. ‎We show that in the case of the $1$-dimensional manifolds‎, ‎our‎ ‎groupoid has a‎ ‎smooth structure such that makes it into a Lie groupoid‎. ‎Using this approach‎, ‎we associated to‎ ‎every vector field an equivalence‎ ‎relation on the Lie algebra of all vector fields on the smooth...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید