نتایج جستجو برای: liouville type system
تعداد نتایج: 3339053 فیلتر نتایج به سال:
In this paper we establish new Hermite-Hadamard type inequalities involving fractional integrals with respect to another function. Such fractional integrals generalize the Riemann-Liouville fractional integrals and the Hadamard fractional integrals. c ©2016 All rights reserved.
Here we prove fractional representation formulae involving generalized fractional derivatives, Caputo fractional derivatives and Riemann–Liouville fractional derivatives. Then we establish Poincaré, Sobolev, Hilbert–Pachpatte and Opial type fractional inequalities, involving the right versions of the abovementioned fractional derivatives.
Some Hermite-Hadamard type inequalities for generalized k-fractional integrals (which are also named [Formula: see text]-Riemann-Liouville fractional integrals) are obtained for a fractional integral, and an important identity is established. Also, by using the obtained identity, we get a Hermite-Hadamard type inequality.
A Riemannian manifold resp. a complex space X is called Liouville if it carries no nonconstant bounded harmonic resp. holomorphic functions. It is called Carathéodory, or Carathéodory hyperbolic, if bounded harmonic resp. holomorphic functions separate the points of X . The problems which we discuss in this paper arise from the following question: When a Galois covering X with Galois group G ov...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید