نتایج جستجو برای: locally linear neuro fuzzy model

تعداد نتایج: 2589892  

Kamran Tamimi Ramezan Ali Mahdavi Nejad

Optimization of machining parameters is very important and the main goal in every machining process. Surface finishing prediction is a pre-requirement to establish a center for automatic machining operations. In this research, a neuro-fuzzy approach is used in order to model and predict the surface roughness in dry turning. This approach has both the learning capability of neural network and li...

2001
António E. Ruano Pedro M. Ferreira C. Cabrita S. Matos

Neural and neuro-fuzzy models are powerful nonlinear modelling tools. Different structures, with different properties, are widely used to capture static or dynamical nonlinear mappings. Static (non-recurrent) models share a common structure: a nonlinear stage, followed by a linear mapping. In this paper, the separability of linear and nonlinear parameters is exploited for completely supervised ...

Leila Shahmohamadi Mahdi AliyariShoorehdeli Sharareh Talaie

In this study, detection and identification of common faults in industrial gas turbines is investigated. We propose a model-based robust fault detection(FD) method based on multiple models. For residual generation a bank of Local Linear Neuro-Fuzzy (LLNF) models is used. Moreover, in fault detection step, a passive approach based on adaptive threshold is employed. To achieve this purpose, the a...

Journal: :Cognitive Systems Research 2002
Giovanna Castellano Anna Maria Fanelli Corrado Mencar

Neuro-fuzzy networks have been successfully applied to extract knowledge from data in the form of fuzzy rules. However, one drawback with the neuro-fuzzy approach is that the fuzzy rules induced by the learning process are not necessarily understandable. The lack of readability is essentially due to the high dimensionality of the parameter space that leads to excessive flexibility in the modifi...

2013
Adel Abdurahman

Three-tank (3T) system is the most representative didactical equipment used as a bench mark system for system modeling, identification and control. A real target representing 3T system has been used for generating data that is used for developing a linear model based on autoregressive exogenous (ARX) method, and neuro-fuzzy (NF) network technique. The developed models have been used as an inter...

2009
Aytac Guven

Genetic programming (GP) has nowadays attracted the attention of researchers in the prediction of hydraulic data. This study presents linear genetic programming (LGP), which is an extension to GP, as an alternative tool in the prediction of scour depth around a circular pile due to waves in medium dense silt and sand bed. Field measurements were used to develop LGP models. The proposed LGP mode...

This paper presents an indirect adaptive system based on neuro-fuzzy approximators for the speed control of induction motors. The uncertainty including parametric variations, the external load disturbance and unmodeled dynamics is estimated and compensated by designing neuro-fuzzy systems. The contribution of this paper is presenting a stability analysis for neuro-fuzzy speed control of inducti...

Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...

1999
Karl-Heinz Temme Ralph Heider Claudio Moraga

Neuro-fuzzy modeling has been intensively studied since the early nineties. Recently a method has been disclosed, that uses a classical feedforward neural network with just one hidden layer. Nodes of the hidden layer use the logistic function as activation function meanwhile the output node has a linear activation function. This paper introduces a generalization of the logistic function and eva...

2014
Tatiana Ilkova Mitko Petrov

In this work a neuro-fuzzy based model of a whey batch fermentation process by a strain Kluyveromyces marxianus var. lactis MC5 is presented. A three-layered neuro-fuzzy network is realized. The simulation results are compared with conventional models (based on mass balance and differential equations). The neuro-fuzzy model provides a better fitness and allows inclusion of linguistic variables ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید