نتایج جستجو برای: mixed type additive and cubic functional equation
تعداد نتایج: 17151334 فیلتر نتایج به سال:
We study the generalized Hyers-Ulam stability of the functional equation f[x1,x2,x3]= h(x1+x2+x3). 2000 Mathematics Subject Classification. 39B22, 39B82.
in this paper we investigate the generalized hyers-ulamstability of the following cauchy-jensen type functional equation$$qbig(frac{x+y}{2}+zbig)+qbig(frac{x+z}{2}+ybig)+qbig(frac{z+y}{2}+xbig)=2[q(x)+q(y)+q(z)]$$ in non-archimedean spaces
We study the nonlocal boundary value problem for a mixed type equation with Riemann–Liouville fractional partial derivative. In hyperbolic part of domain, functional is solved by iteration method. The reduced to solving differential equation.
In this paper, we investigate the stability problems for the functional equation f(ax+ y) + af(x− y)− a2+3a 2 f(x) −a2−a 2 f(−x)− f(y)− af(−y) = 0 in random normed spaces. Mathematics Subject Classification: 39B82, 46S50
A classical question in the theory of functional equations is “when is it true that a mapping, which approximately satisfies a functional equation, must be somehow close to an exact solution of the equation?” Such a problem, called a stability problem of the functional equation, was formulated by Ulam 1 in 1940. In the next year, Hyers 2 gave a partial solution of Ulam’s problem for the case of...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید