نتایج جستجو برای: nonnegative signed total roman dominating function
تعداد نتایج: 1969687 فیلتر نتایج به سال:
Let G be a graph with no isolated vertex and let N(v) the open neighbourhood of v∈V(G). f:V(G)→{0,1,2} function Vi={v∈V(G):f(v)=i} for every i∈{0,1,2}. We say that f is strongly total Roman dominating on if subgraph induced by V1∪V2 has N(v)∩V2≠∅ v∈V(G)\V2. The domination number G, denoted γtRs(G), defined as minimum weight ω(f)=∑x∈V(G)f(x) among all functions G. This paper devoted to study it ...
For a graph G = (V, E), a set S ⊆ V (G) is a total dominating set if it is dominating and both 〈S〉 has no isolated vertices. The cardinality of a minimum total dominating set in G is the total domination number. A set S ⊆ V (G) is a total restrained dominating set if it is total dominating and 〈V (G) − S〉 has no isolated vertices. The cardinality of a minimum total restrained dominating set in ...
A double Roman dominating function on a graph G=(V,E) is f:V?{0,1,2,3}, satisfying the condition that every vertex u for which f(u)=1 adjacent to at least one assigned 2 or 3, and with f(u)=0 3 two vertices 2. The weight of f equals sum w(f)=?v?Vf(v). minimum G called domination number ?dR(G) G. We obtain tight bounds in some cases closed expressions generalized Petersen graphs P(ck,k). In shor...
A Roman domination function on a graph G is a function r : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman function is the value r(V (G)) = ∑ u∈V (G) r(u). The Roman domination number γR(G) of G is the minimum weight of a Roman domination function on G . "Roman Criticality" has been ...
Given a graph G = (V,E) together with a nonnegative integer requirement on vertices r : V → Z+, the annotated edge dominating set problem is to find a minimum set M ⊆ E such that, each edge in E −M is adjacent to some edge in M , and M contains at least r(v) edges incident on each vertex v ∈ V . The annotated edge dominating set problem is a natural extension of the classical edge dominating se...
in this paper, we show that for any finite order entire function $f(z)$, the function of the form $f(z)^{n}[f(z+c)-f(z)]^{s}$ has no nonzero finite picard exceptional value for all nonnegative integers $n, s$ satisfying $ngeq 3$, which can be viewed as a different result on hayman conjecture. we also obtain some uniqueness theorems for difference polynomials of entire functions sharing one comm...
A edge 2-rainbow dominating function (E2RDF) of a graph G is a function f from the edge set E(G) to the set of all subsets of the set {1,2} such that for any edge.......................
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید