For a number fieldK, that is, a finite extension of Q, and a prime number p, a fundamental theorem of algebraic number theory implies that the ideal (p) ⊆ OK factors uniquely into prime ideals as (p) = p1 1 · · · p eg g . In this paper we explore different interpretations of this using the factorization of polynomials in finite and p-adic fields and Galois theory. In particular, we present some...