نتایج جستجو برای: semidefinite optimization
تعداد نتایج: 321432 فیلتر نتایج به سال:
This work considers the problem of dynamic identification for robotic mechanisms given noisy measurements configuration variables and applied torques. Conventionally, this is solved via least-squares, exploiting linearity properties inverse dynamics model rigid-body systems. However, nonlinear dependency on configurations velocities gives rise to bias in resultant estimates when using or even f...
Copositive programming is a relative young field which has evolved into a highly active research area in mathematical optimization. An important line of research is to use semidefinite programming to approximate conic programming over the copositive cone. Two major drawbacks of this approach are the rapid growth in size of the resulting semidefinite programs, and the lack of information about t...
We consider the global minimization of a multivariate polynomial on a semi-algebraic set defined with polynomial inequalities. We then compare two hierarchies of relaxations, namely, LP relaxations based on products of the original constraints, in the spirit of the RLT procedure of Sherali and Adams (1990), and recent semidefinite programming (SDP) relaxations introduced by the author. The comp...
We consider the class of polynomial optimization problems inf{f(x) : x ∈ K} for which the quadratic module generated by the polynomials that define K and the polynomial c − f (for some scalar c) is Archimedean. For such problems, the optimal value can be approximated as closely as desired by solving a hierarchy of semidefinite programs and the convergence is finite generically. Moreover, the Ar...
A disadvantage of the SDP (semidefinite programming) relaxation method for quadratic and/or combinatorial optimization problems lies in its expensive computational cost. This paper proposes a SOCP (second-order-cone programming) relaxation method, which strengthens the lift-and-project LP (linear programming) relaxation method by adding convex quadratic valid inequalities for the positive semid...
We consider a new semidefinite programming (SDP) relaxation of the symmetric traveling salesman problem (TSP), that may be obtained via an SDP relaxation of the more general quadratic assignment problem (QAP). We show that the new relaxation dominates the one in the paper: [D. Cvetković, M. Cangalović and V. Kovačević-Vujčić. Semidefinite Programming Methods for the Symmetric Traveling Salesman...
Factor Analysis (FA) is a technique of fundamental importance that is widely used in classical and modern multivariate statistics, psychometrics, and econometrics. In this paper, we revisit the classical rank-constrained FA problem which seeks to approximate an observed covariance matrix (Σ) by the sum of a Positive Semidefinite (PSD) low-rank component (Θ) and a diagonal matrix (Φ) (with nonne...
A wide variety of problems in global optimization, combinatorial optimization as well as systems and control theory can be solved by using linear and semidefinite programming. Sometimes, due to the use of floating point arithmetic in combination with ill-conditioning and degeneracy, erroneous results may be produced. The purpose of this article is to show how rigorous error bounds for the optim...
We consider optimization problems of the following type: min{tr(CX) : A(X) = B,X positive semidefinite}. Here, tr(·) denotes the trace operator, C and X are symmetric n× n matrices, B is a symmetric m ×m matrix and A(·) denotes a linear operator. Such problems are called semidefinite programs and have recently become the object of considerable interest due to important connections with max-min ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید