نتایج جستجو برای: semidefinite relaxation
تعداد نتایج: 81385 فیلتر نتایج به سال:
SparesPOP is a MATLAB implementation of a sparse semidefinite programming (SDP) relaxation method for approximating a global optimal solution of a polynomial optimization problem (POP) proposed by Waki et al. The sparse SDP relaxation exploits a sparse structure of polynomials in POPs when applying “a hierarchy of LMI relaxations of increasing dimensions” by Lasserre. The efficiency of SparsePO...
Recent results in compressed sensing show that, under certain conditions, the sparsest solution to an underdetermined set of linear equations can be recovered by solving a linear program. These results either rely on computing sparse eigenvalues of the design matrix or on properties of its nullspace. So far, no tractable algorithm is known to test these conditions and most current results rely ...
The classical trust-region subproblem (TRS) minimizes a nonconvex quadratic objective over the unit ball. In this paper, we consider extensions of TRS having extra constraints. When two parallel cuts are added to TRS, we show that the resulting nonconvex problem has an exact representation as a semidefinite program with additional linear and second-order-cone constraints. For the case where an ...
SparesPOP is a MATLAB implementation of a sparse semidefinite programming (SDP) relaxation method proposed for polynomial optimization problems (POPs) in the recent paper by Waki et al. The sparse SDP relaxation is based on “a hierarchy of LMI relaxations of increasing dimensions” by Lasserre, and exploits a sparsity structure of polynomials in POPs. The efficiency of SparsePOP to compute bound...
Abstract. Prototypical data clustering is known to su↵er from poor initializations. Recently, a semidefinite relaxation has been proposed to overcome this issue and to enable the use of convex programming instead of ad-hoc procedures. Unfortunately, this relaxation does not extend to the more involved case where clusters are defined by parametric models, and where the computation of means has t...
The quadratic assignment problem (QAP) is arguably one of the hardest NP-hard discrete optimization problems. Problems of dimension greater than 25 are still considered to be large scale. Current successful solution techniques use branch-and-bound methods, which rely on obtaining strong and inexpensive bounds. In this paper, we introduce a new semidefinite programming (SDP) relaxation for gener...
We present a hierarchy of semidefinite programming (SDP) relaxations for solving the concave cost transportation problem (CCTP), which is known to be NP-hard, with p suppliers and q demanders. In particular, we study cases in which the cost function is quadratic or square-root concave. The key idea of our relaxation methods is in the change of variables to CCTPs, and due to this, we can constru...
Quadratic assignment problems (QAPs) and quadratic assignment matchings (QAMs) recently gained a lot of interest in computer graphics and vision, e.g. for shape and graph matching. Literature describes several convex relaxations to approximate solutions of the NP-hard QAPs in polynomial time. We compare the convex relaxations recently introduced in computer graphics and vision to established ap...
For binary polynomial optimization problems (POPs) of degree d with n variables, we prove that the ⌈(n+ d− 1)/2⌉th semidefinite (SDP) relaxation in Lasserre’s hierarchy of the SDP relaxations provides the exact optimal value. If binary POPs involve only even-degree monomials, we show that it can be further reduced to ⌈(n + d − 2)/2⌉. This bound on the relaxation order coincides with the conject...
Many non-convex problems in machine learning such as embedding and clustering have been solved using convex semidefinite relaxations. These semidefinite programs (SDPs) are expensive to solve and are hence limited to run on very small data sets. In this paper we show how we can improve the quality and speed of solving a number of these problems by casting them as low-rank SDPs and then directly...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید