A regular covering projection ℘: X̃ → X of connected graphs is G-admissible if G lifts along ℘. Denote by G̃ the lifted group, and let CT(℘) be the group of covering transformations. The projection is called G-split whenever the extension CT(℘) → G̃ → G splits. In this paper, split 2-covers are considered, with a particular emphasis given to cubic symmetric graphs. Supposing that G is transitive o...