We extend the primal-dual approximation technique of Goemans and Williamson to the Steiner connectivity problem, a kind of Steiner tree problem in hypergraphs. This yields a (k+1)-approximation algorithm for the case that k is the minimum of the maximal number of nodes in a hyperedge minus 1 and the maximal number of terminal nodes in a hyperedge. These results require the proof of a degree pro...