We give a classification theorem for unital separable nuclear simple C∗-algebras with tracial rank no more than one. Let A and B be two unital separable simple nuclear C∗-algebras with TR(A), TR(B) ≤ 1 which satisfy the universal coefficient theorem. We show that A ∼= B if and only if there is an order and unit preserving isomorphism γ = (γ0, γ1, γ2) : (K0(A),K0(A)+, [1A],K1(A), T (A)) ∼= (K0(B...