نتایج جستجو برای: unital a module

تعداد نتایج: 13440326  

Journal: :bulletin of the iranian mathematical society 0
t. amouzegar‎ department of‎ ‎mathematics, quchan university of advanced technology, quchan‎, ‎iran.

let $r$ be a right artinian ring or a perfect commutative‎‎ring‎. ‎let $m$ be a noncosingular self-generator $sum$-lifting‎‎module‎. ‎then $m$ has a direct decomposition $m=oplus_{iin i} m_i$‎,‎where each $m_i$ is noetherian quasi-projective and each‎‎endomorphism ring $end(m_i)$ is local‎.

Journal: :Hokkaido Mathematical Journal 1979

Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.

Journal: :bulletin of the iranian mathematical society 0
z. ‎zhu department of mathematics,jiaxing university,jiaxing,zhejiang province,china,314001

let $r$ be a ring‎, ‎and let $n‎, ‎d$ be non-negative integers‎. ‎a right $r$-module $m$ is called $(n‎, ‎d)$-projective if $ext^{d+1}_r(m‎, ‎a)=0$ for every $n$-copresented right $r$-module $a$‎. ‎$r$ is called right $n$-cocoherent if every $n$-copresented right $r$-module is $(n+1)$-coprese-nted‎, ‎it is called a right co-$(n,d)$-ring if every right $r$-module is $(n‎, ‎d)$-projective‎. ‎$r$ ...

2007
C. T. C. WALL

In recent work on some topological problems (7), I was forced to adopt a complicated definition of 'Hermitian form' which differed from any in the literature. A recent paper by Tits (5) on quadratic forms over division rings contains a new and simple definition of these. A major objective of this paper is to formulate both these definitions in somewhat more general terms, and to show that they ...

Journal: :Discrete Applied Mathematics 2014

Journal: :International Journal of Theoretical Physics 2005

Journal: :Algebraic & Geometric Topology 2019

Journal: :Journal of Mathematical Analysis and Applications 2005

2014
Xinbing Yang Xiaochun Fang

and Applied Analysis 3 Lemma 2.2 see 5, Theorem 3.3 , 6, Theorem 3.3 . Let A be a simple unital C∗-algebra. If TRR A 0, then RR A 0. If Tsr A 1 and has the (SP)-property, then tsr A 1. Definition 2.3 see 13, Definition 1.2 . Let A be an infinite dimensional finite simple separable unital C∗-algebra, and let α : G → Aut A be an action of a finite group G on A. We say that α has the tracial Rokhl...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید