نتایج جستجو برای: unital a module
تعداد نتایج: 13440326 فیلتر نتایج به سال:
let $r$ be a right artinian ring or a perfect commutativering. let $m$ be a noncosingular self-generator $sum$-liftingmodule. then $m$ has a direct decomposition $m=oplus_{iin i} m_i$,where each $m_i$ is noetherian quasi-projective and eachendomorphism ring $end(m_i)$ is local.
Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.
let $r$ be a ring, and let $n, d$ be non-negative integers. a right $r$-module $m$ is called $(n, d)$-projective if $ext^{d+1}_r(m, a)=0$ for every $n$-copresented right $r$-module $a$. $r$ is called right $n$-cocoherent if every $n$-copresented right $r$-module is $(n+1)$-coprese-nted, it is called a right co-$(n,d)$-ring if every right $r$-module is $(n, d)$-projective. $r$ ...
In recent work on some topological problems (7), I was forced to adopt a complicated definition of 'Hermitian form' which differed from any in the literature. A recent paper by Tits (5) on quadratic forms over division rings contains a new and simple definition of these. A major objective of this paper is to formulate both these definitions in somewhat more general terms, and to show that they ...
and Applied Analysis 3 Lemma 2.2 see 5, Theorem 3.3 , 6, Theorem 3.3 . Let A be a simple unital C∗-algebra. If TRR A 0, then RR A 0. If Tsr A 1 and has the (SP)-property, then tsr A 1. Definition 2.3 see 13, Definition 1.2 . Let A be an infinite dimensional finite simple separable unital C∗-algebra, and let α : G → Aut A be an action of a finite group G on A. We say that α has the tracial Rokhl...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید