We prove theorems on boundedness of operators weak type $(\varphi_0, \psi_0, \varphi_1, \psi_1)$ from Lorentz space $\Lambda_{\varphi,a}(\mathbb{R}^n)$ to $\Lambda_{\varphi,b}(\mathbb{R}^n)$ in “limit” cases, when one functions $\varphi(t) / \varphi_0(t)$, \varphi_1(t)$ slowly changes at zero and infinity.