نتایج جستجو برای: σ urysohns lemma

تعداد نتایج: 34229  

2015
CHRISTOPHER J. HILLAR Thomas Kahle Robert Krone

We correct errors in the proof of [7, Theorem 19] and in the description of [7, Table 1]. We also fix some typos and notational issues. We thank Thomas Kahle for pointing out the mistake in the table and Robert Krone for finding the gap in our original proof. We begin with a comment to avoid confusion in the proof of [7, Proposition 13]. Let dlex be the partial ordering of [P]k (as defined in [...

2014
Ziyu Wang Babak Shakibi Lin Jin Nando de Freitas

where σ T (x) = κ(x,x) − k1:T (x)K−1k1:T (x) and this bound is tight. Moreover, σ T (x) is the posterior predictive variance of a Gaussian process with the same kernel. Lemma 3 (Adapted from Proposition 1 of de Freitas et al. (2012)). Let κ : R × R → R be a kernel that is twice differentiable along the diagonal {(x,x) |x ∈ RD}, with L defined as in Lemma 1.1, and f be an element of the RKHS wit...

2014
BY Chao Gao Zongming Ma Zhao Ren Harrison H. Zhou

In this appendix, we prove Theorem 4 and Lemmas 7 – 12 in order. A.1. Proof of Theorem 4. We first need a lemma for perturbation bound of square root matrices. Lemma 16. Let A, B be positive semi-definite matrices, and then for any unitarily invariant norm ï¿¿·ï¿¿, ï¿¿A 1/2 − B 1/2 ï¿¿ ≤ 1 σ min (A 1/2) + σ min (B 1/2) ï¿¿A − Bï¿¿. Proof. The proof essentially follows the idea of [27]. Let D = ...

2006
Piotr Kowalski Anand Pillay

We introduce the categories of algebraic σ-varieties and σ-groups over a difference field (K,σ). Under a “linearly σ-closed” assumption on (K,σ) we prove an isotriviality theorem for σ-groups. This theorem yields immediately the key lemma in a proof of the Manin-Mumford conjecture. The present paper uses crucially ideas from [10] but in a model theory free manner. The applications to Manin-Mumf...

2006
W. S. KENDALL

In [1] we introduced a class of positive recurrent Markov chains, named tame chains. A perfect simulation algorithm, based on the method of dominated CFTP, was then shown to exist in principle for such chains. The construction of a suitable dominating process was flawed, in that it relied on an incorrectly stated lemma ([1], Lemma 6). This claimed that a geometrically ergodic chain, subsampled ...

2014
M. Mursaleen

and Applied Analysis 3 Lemma 1.4 see 2 . Let X ⊃ φ be a BK-space and Y any of the spaces c0, c, or ∞. If A ∈ X,Y , then ‖LA‖ ‖A‖ X, ∞ sup n ‖An‖X < ∞, 1.4 where ‖A‖ X, ∞ denotes the operator norm for the matrix A ∈ X, ∞ . Sargent 3 defined the following sequence spaces. Let C denote the space whose elements are finite sets of distinct positive integers. Given any element σ of C, we denote by c ...

2014
Shuo Li Zhengrong Xiang Hamid Reza Karimi

and Applied Analysis 3 Combining Lemma 2 in [45] and Lemma 1 in [28], one can obtain the remaining proof easily. Remark 4. WhenT → 0, system (2) degenerates to a general continuous-time positive switched system as follows: ?̇? (t) = A σ(t) x (t) + A dσ(t) x (t − d (t)) + D σ(t) w (t) , x (t) = φ (t) , t ∈ [−d, 0] z (t) = C σ(t) x (t) + E σ(t) w (t) , (5) where d(t) denotes the time-varying delay...

2006
George-Marios Angeletos Christian Hellwig Alessandro Pavan

Lemma 2. For any r∗ ∈ (r, r̃) and ε > 0, there exist η̄ > 0 and ρ̄ < r/r∗ such that for any (η, ρ) < (η̄, ρ̄), conditions (3)-(2) below admit a solution (x0, x̂, θ0, θ00) that satisfies θ0 ≤ θ00, |x0 − x∗| < ε, ̄̄θ0 − θ∗ ̄̄ < ε, ̄̄θ00 − θ∗∗ ̄̄ < ε, and x̂ < −1/ε. 1−Ψ(x−θ σ ) = r − (r − ρr∗)[Ψ(x 0−θ0 σ )−Ψ(x 0−θ00 σ )] (1) 1−Ψ( x̂−θ0 σ ) = r + [r∗ρ+ r∗(1− ρ) exp( r ∗−r η )− r][Ψ( x̂−θ 0 σ )−Ψ( x̂−θ 00 σ )] (2) θ0...

2014
Jing Wu Xinguang Zhang

and Applied Analysis 3 Lemma 2.1 see 8, 9 . 1 If x ∈ L1 0, 1 , ρ > σ > 0, and n ∈ N, then IIx t I x t , DtIx t Iρ−σx t , 2.4 DtIx t x t , d dtn Dtx t Dt x t . 2.5 2 If ν > 0, σ > 0, then Dttσ−1 Γ σ Γ σ − ν t σ−ν−1. 2.6 Lemma 2.2 see 8 . Assume that x ∈ L1 0, 1 and μ > 0. Then IDtx t x t c1tμ−1 c2tμ−2 · · · cntμ−n, 2.7 where ci ∈ R i 1, 2, . . . , n , n is the smallest integer greater than or eq...

2014
Ulrich Schöpp

ion of Γ, x : N `M : N nat× σ (γ × nat)× σ M ∀σ. Abstraction of Γ, x : N `M : Nion of Γ, x : N `M : N nat× σ (γ × nat)× σ M ∀σ. nat× σ′ (γ × nat)× σ′ γ × σ nat× (γ × σ′) Abstraction of Γ, x : N `M : Nion of Γ, x : N `M : N nat× σ (γ × nat)× σ M ∀σ. nat× τ γ × σ ∀σ.∃φ.∀τ . φ× σ (φ× nat)× τ nat× (φ× τ) λx:X.M Abstraction of Γ, x : N `M : Nion of Γ, x : N `M : N nat× σ (γ × nat)× σ M ∀σ. nat× τ γ ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید