نتایج جستجو برای: مدل huff
تعداد نتایج: 120387 فیلتر نتایج به سال:
Isogenies of elliptic curves over finite fields have been well-studied, in part because there are several cryptographic applications. Using Vélu’s formula, isogenies can be constructed explicitly given their kernel. Vélu’s formula applies to elliptic curves given by a Weierstrass equation. In this paper we show how to similarly construct isogenies on Edwards curves and Huff curves. Edwards and ...
We look at arithmetic progressions on elliptic curves known as Huff curves. By an arithmetic progression on an elliptic curve, we mean that either the x or y-coordinates of a sequence of rational points on the curve form an arithmetic progression. Previous work has found arithmetic progressions on Weierstrass curves, quartic curves, Edwards curves, and genus 2 curves. We find an infinite number...
This paper describes the addition law for a new form for elliptic curves over fields of characteristic 2. Specifically, it presents explicit formulæ for adding two different points and for doubling points. The case of differential point addition (that is, point addition with a known difference) is also addressed. Finally, this paper presents unified point addition formulæ; i.e., point addition ...
Актуальность. Перспективным направлением разработки нефтяных месторождений является применение нетрадиционных способов добычи трудноизвлекаемых запасов. Особый интерес уделяется технологиям использования углекислого газа в условиях политики снижения углеродного следа мировом энергобалансе. Диоксид углерода одним из наиболее эффективных вытесняющих агентов для повышения нефтеотдачи пластов, кото...
In this paper, we look at long geometric progressions on different model of elliptic curves, namely Weierstrass curves, Edwards and twisted Edwards curves, Huff curves and general quartics curves. By a geometric progression on an elliptic curve, we mean the existence of rational points on the curve whose x-coordinate (or y-coordinate) are in geometric progression. We find infinite families of t...
In this paper we find division polynomials for Huff curves, Jacobi quartics, and Jacobi intersections. These curves are alternate models for elliptic curves to the more common Weierstrass curve. Division polynomials for Weierstrass curves are well known, and the division polynomials we find are analogues for these alternate models. Using the division polynomials, we show recursive formulas for ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید