نتایج جستجو برای: 2 locating set

تعداد نتایج: 3047059  

Journal: :Australasian J. Combinatorics 2009
Mustapha Chellali Nader Jafari Rad

A locating-total dominating set of a graph G = (V (G), E(G)) with no isolated vertex is a set S ⊆ V (G) such that every vertex of V (G) is adjacent to a vertex of S and for every pair of distinct vertices u and v in V (G) − S, N(u) ∩ S = N(v) ∩ S. Let γ t (G) be the minimum cardinality of a locating-total dominating set of G. A graph G is said to be locating-total domination vertex critical if ...

Journal: :Discrete Applied Mathematics 2011
Chunxia Chen Changhong Lu Zhengke Miao

Let G = (V,E) be a graph and let r ≥ 1 be an integer. For a set D ⊆ V , define Nr[x] = {y ∈ V : d(x, y) ≤ r} and Dr(x) = Nr[x] ∩ D, where d(x, y) denotes the number of edges in any shortest path between x and y. D is known as an r-identifying code (r-locating-dominating set, respectively), if for all vertices x ∈ V (x ∈ V \D, respectively), Dr(x) are all nonempty and different. In this paper, w...

Journal: :Games 2015
Bryan Randolph Bruns

Prisoner’s Dilemma, Chicken, Stag Hunts, and other two-person two-move (2 × 2) models of strategic situations have played a central role in the development of game theory. The Robinson–Goforth topology of payoff swaps reveals a natural order in the payoff space of 2 × 2 games, visualized in their four-layer “periodic table” format that elegantly organizes the diversity of 2 × 2 games, showing r...

Journal: :Discrete Mathematics 2017
Florent Foucaud Michael A. Henning

A set D of vertices of a graph G is locating if every two distinct vertices outside D have distinct neighbors in D; that is, for distinct vertices u and v outside D, N(u) ∩ D ≠ N(v) ∩ D, where N(u) denotes the open neighborhood of u. If D is also a dominating set (total dominating set), it is called a locating-dominating set (respectively, locating-total dominating set) of G. A graph G is twin-...

A. R. Eydi, E. Korani, I. Nakhai Kamalabadi

The present study introduced a novel hierarchical hub set covering problem with capacity constraints. This study showed the significance of fixed charge costs for locating facilities, assigning hub links and designing a productivity network. The proposed model employs mixed integer programming to locate facilities and establish links between nodes according to the travel time between an origin-...

Journal: :Theor. Comput. Sci. 2005
Vladimiro Sassone Pawel Sobocinski

Groupoidal relative pushouts (GRPOs) have recently been proposed by the authors as a new foundation for Leifer and Milner’s approach to deriving labelled bisimulation congruences from reduction systems. In this paper, we develop the theory of GRPOs further, proving that well-known equivalences, other than bisimulation, are congruences. To demonstrate the type of category theoretic arguments whi...

2013
R. Jayagopal

A locating-total dominating set (LTDS) S of a graph G is a total dominating set S of G such that for every two vertices u and v in V(G) − S, N(u)∩S ≠ N(v)∩S. The locating-total domination number ( ) l t G  is the minimum cardinality of a LTDS of G. A LTDS of cardinality ( ) l t G  we call a ( ) l t G  -set. In this paper, we determine the locating-total domination number for the special clas...

2015
Ville Junnila V. Junnila

A set C of vertices in a graph G = (V,E) is total dominating in G if all vertices of V are adjacent to a vertex of C. Furthermore, if a total dominating set C in G has the additional property that for any distinct vertices u, v ∈ V \ C the subsets formed by the vertices of C respectively adjacent to u and v are different, then we say that C is a locating-total dominating set in G. Previously, l...

Journal: :Discussiones Mathematicae Graph Theory 2015
Ville Junnila

A set C of vertices in a graph G = (V,E) is total dominating in G if all vertices of V are adjacent to a vertex of C. Furthermore, if a total dominating set C in G has the additional property that for any distinct vertices u, v ∈ V \ C the subsets formed by the vertices of C respectively adjacent to u and v are different, then we say that C is a locating-total dominating set in G. Previously, l...

2015
Ville Junnila V. Junnila

A set C of vertices in a graph G = (V,E) is total dominating in G if all vertices of V are adjacent to a vertex of C. Furthermore, if a total dominating set C in G has the additional property that for any distinct vertices u, v ∈ V \ C the subsets formed by the vertices of C respectively adjacent to u and v are different, then we say that C is a locating-total dominating set in G. Previously, l...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید