نتایج جستجو برای: actin cortex
تعداد نتایج: 191775 فیلتر نتایج به سال:
Myosin II motors embedded within the actin cortex generate contractile forces to modulate cell shape in essential behaviors, including polarization, migration, and division. In sarcomeres, myosin II-mediated sliding of antiparallel F-actin is tightly coupled to myofibril contraction. By contrast, cortical F-actin is highly disordered in polarity, orientation, and length. How the disordered natu...
Cell contractility is mainly imagined as a force dipole-like interaction based on actin stress fibers that pull cellular adhesion sites. Here, we present different type of isotropic contractions within the actomyosin cortex. Measuring mechanosensitive cortical suspended cells among various cell lines allowed us to exclude effects caused by fibers. We found epithelial display higher tension than...
The contractile actin cortex is a thin layer of actin, myosin, and actin-binding proteins that subtends the membrane of animal cells. The cortex is the main determinant of cell shape and plays a fundamental role in cell division [1-3], migration [4], and tissue morphogenesis [5]. For example, cortex contractility plays a crucial role in amoeboid migration of metastatic cells [6] and during divi...
The shape of animal cells is, to a large extent, determined by the cortical actin network that underlies the cell membrane. Because of the presence of myosin motors, the actin cortex is under tension, and local relaxation of this tension can result in cortical flows that lead to deformation and polarization of the cell. Cortex relaxation is often regulated by polarizing signals, but the cortex ...
Microtubules stimulate contractile-ring formation in the equatorial cortex and simultaneously suppress contractility in the polar cortex; how they accomplish these differing activities is incompletely understood. We measured the behavior of GFP-actin in mammalian cells treated with nocodazole under conditions that either completely eliminate microtubules or selectively disassemble astral microt...
The actin cell cortex in eukaryotic cells is a key player in controlling and maintaining the shape of cells, and in driving major shape changes such as in cytokinesis. It is thereby constantly being remodeled. Cell shape changes require forces acting on membranes that are generated by the interplay of membrane coupled actin filaments and assemblies of myosin motors. Little is known about how th...
Dictyostelium myosin II mechanochemistry promotes active behavior of the cortex on long time scales.
Cell cortices rearrange dynamically to complete cytokinesis, crawlin response to chemoattractant, build tissues, and make neuronal connections. Highly enriched in the cell cortex, actin, myosin II, and actin crosslinkers facilitate cortical movements. Because cortical behavior is the consequence of nanoscale biochemical events, it is essential to probe the cortex at this level. Here, we use hig...
The contractile ring in dividing animal cells is formed primarily through the reorganization of existing actin filaments (Cao, L.-G., and Y.-L. Wang. 1990. J. Cell Biol. 110:1089-1096), but it is not clear whether the process involves a random recruitment of diffusible actin filaments from the cytoplasm, or a directional movement of cortically associated filaments toward the equator. We have st...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید