نتایج جستجو برای: advection upstream splitting method
تعداد نتایج: 1701405 فیلتر نتایج به سال:
Two time-splitting methods for integrating the elastic equations are presented. The methods are based on a third-order Runge–Kutta time scheme and the Crowley advection schemes. The schemes are combined with a forward–backward scheme for integrating high-frequency acoustic and gravity modes to create stable splitexplicit schemes for integrating the compressible Navier–Stokes equations. The time...
An algorithm based on operator splitting has been successfully implemented for solving unsteady, advectiondominated transport problems in 3-D. Specifically, the general operator-integration-factor splitting method of Maday et al. is applied to the unsteady advection–diffusion equation with source/sink terms. The algorithm incorporates a 3-D characteristic Galerkin scheme to treat advection, and...
Operator splitting time discretization techniques are getting more and more popular for the numerical simulation of non-linear problems in porous media. The main idea is to split complex operators in evolution equations into simpler ones which are successively solved in each time step. For porous media flow a natural splitting is given by the diffusive and the advective part of the flux. Then f...
The present work introduces a modified scheme for the solution of compressible 2-D full Navier-Stokes equations, using Flux Vector Splitting method. As a result of this modification, numerical diffusion is reduced. The computer code which is developed based on this algorithm can be used easily and accurately to analyze complex flow fields with discontinuity in properties, in cases such as shock...
The present work introduces a modified scheme for the solution of compressible 2-D full Navier-Stokes equations, using Flux Vector Splitting method. As a result of this modification, numerical diffusion is reduced. The computer code which is developed based on this algorithm can be used easily and accurately to analyze complex flow fields with discontinuity in properties, in cases such as shock...
The numerical solutions of the advection-diffusion equation are themselves numerous and sometimes very sophisticated, in order to avoid two undesirable features: oscillatory behavior and numerical diffusion. It is known that the common practice of “splitting-up” the solution is not always the best approach to the advection-diffusion problem. By using the ordinary differential equation analogy m...
The diiusive characteristics of two upwind schemes, multi-dimensional uctuation splitting and dimensionally-split nite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear...
The dispersal and mixing of scalar quantities such as concentrations or thermal energy are often modeled by advection-diffusion equations. Such problems arise in a wide variety of engineering, ecological and geophysical applications. In these situations a quantity such as chemical or pollutant concentration or temperature variation diffuses while being transported by the governing flow. In the ...
Reaction-Advection-Diffusion problems occurring in Air Pollution Models have very stiff reaction terms and moderately stiff vertical mixing (diffusion and cloud transport) terms which both should be integrated implicitly in time. Standard implicit time stepping is by far too expensive for this type of problems whereas widely used splitting techniques may lead to unacceptably large errors for fa...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید