let $mathcal{a}$ be a banach algebra with bai and $e$ be an introverted subspace of $mathcal{a'}$.in this paper we study the quotient arens regularity of $mathcal{a}$ with respect to $e$ and prove that the group algebra $l^1(g)$ for a locally compact group $g$, is quotient arens regular with respect to certain introverted subspace $e$ of $l^infty(g)$.some related result are given as well.