نتایج جستجو برای: annihilating
تعداد نتایج: 704 فیلتر نتایج به سال:
the rings considered in this article are commutative with identity which admit at least two nonzero annihilating ideals. let $r$ be a ring. let $mathbb{a}(r)$ denote the set of all annihilating ideals of $r$ and let $mathbb{a}(r)^{*} = mathbb{a}(r)backslash {(0)}$. the annihilating-ideal graph of $r$, denoted by $mathbb{ag}(r)$ is an undirected simple graph whose vertex set is $mathbb{a}(r)...
Spiking neural P systems with anti-spikes (ASN P systems, for short) are a variant of spiking neural P systems, which are inspired by inhibitory impulses/spikes or inhibitory synapses. The typical feature of ASN P systems is when a neuron contains both spikes and anti-spikes, the spikes and anti-spikes will immediately annihilate each other in a maximal way. In this work, we consider a restrict...
Let G be a digraph with n vertices and A(G) be its adjacency matrix. A monic polynomial f(x) of degree at most n is called an annihilating polynomial of G if . 0 )) ( ( = G A f G is said to be annihilatingly unique if it possesses a unique annihilating polynomial. We prove that two families of digraphs, i.e., the ladder digraphs and the difans, are annihilatingly unique by studying the similari...
The rings considered in this article are commutative with identity which admit at least two nonzero annihilating ideals. Let $R$ be a ring. Let $mathbb{A}(R)$ denote the set of all annihilating ideals of $R$ and let $mathbb{A}(R)^{*} = mathbb{A}(R)backslash {(0)}$. The annihilating-ideal graph of $R$, denoted by $mathbb{AG}(R)$ is an undirected simple graph whose vertex set is $mathbb{A}(R...
in this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. weobserve that over a commutative ring $r$, $bbb{ag}_*(_rm)$ isconnected and diam$bbb{ag}_*(_rm)leq 3$. moreover, if $bbb{ag}_*(_rm)$ contains a cycle, then $mbox{gr}bbb{ag}_*(_rm)leq 4$. also for an $r$-module $m$ with$bbb{a}_*(m)neq s(m)setminus {0}$, $...
Let f1, . . . , fp be polynomials in C[x1, . . . , xn] and let D = Dn be the n-th Weyl algebra. The annihilating ideal of fs = f1 1 · · · f sp p in D[s] = D[s1, . . . , sp] is a necessary step for the computation of the Bernstein-Sato ideals of f1, . . . , fp. We point out experimental differences among the efficiency of the available methods to obtain this annihilating ideal and provide some u...
Quantum Monte Carlo calculations of the relaxation energy, pair-correlation function, and annihilating-pair momentum density are presented for a positron immersed in a homogeneous electron gas. We find smaller relaxation energies and contact pair-correlation functions in the important low-density regime than predicted by earlier studies. Our annihilating-pair momentum densities have almost zero...
Recent PAMELA data show that positron fraction has an excess above several GeV while anti-proton one is not. Moreover ATIC data indicates that electron/positron flux have a bump from 300 GeV to 800 GeV. Both annihilating dark matter (DM) with large boost factor and decaying DM with the life around 1026s can account for the PAMELA and ATIC observations if their main final products are charged le...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید