نتایج جستجو برای: annihilating submodule graph

تعداد نتایج: 199397  

Journal: :journal of linear and topological algebra (jlta) 2015
m ahrari sh. a. safari sabet b amini

the annihilating-ideal graph of a commutative ring $r$ is denoted by $ag(r)$, whose vertices are all nonzero ideals of $r$ with nonzero annihilators and two distinct vertices $i$ and $j$ are adjacent if and only if $ij=0$. in this article, we completely characterize rings $r$ when $gr(ag(r))neq 3$.

Journal: :journal of algebra and related topics 2014
n. k. tohidi f. esmaeili khalil saraei s. a. jalili

let $m$ be a module over a commutative ring $r$ and let $n$ be a proper submodule of $m$. the total graph of $m$ over $r$ with respect to $n$, denoted by $t(gamma_{n}(m))$, have been introduced and studied in [2]. in this paper, a generalization of the total graph $t(gamma_{n}(m))$, denoted by $t(gamma_{n,i}(m))$ is presented, where $i$ is an ideal of $r$. it is the graph with all elements of $...

2015
M. BAZIAR

In this article, we give several generalizations of the concept of annihilating an ideal graph over a commutative ring with identity to modules. We observe that, over a commutative ring, R, AG∗(RM) is connected, and diamAG∗(RM) ≤ 3. Moreover, if AG∗(RM) contains a cycle, then grAG∗(RM) ≤ 4. Also for an R-module M with A∗(M) ̸= S(M) \ {0}, A∗(M) = ∅, if and only if M is a uniform module, and ann(...

‎Let $R$ be commutative ring with identity and $M$ be an $R$-module‎. ‎The zero divisor graph of $M$ is denoted $Gamma{(M)}$‎. ‎In this study‎, ‎we are going to generalize the zero divisor graph $Gamma(M)$ to submodule-based zero divisor graph $Gamma(M‎, ‎N)$ by replacing elements whose product is zero with elements whose product is in some submodules $N$ of $M$‎. ‎The main objective of this pa...

Let $R$ be a commutative ring with identity, and $ mathrm{A}(R) $ be the set of ideals with non-zero annihilator. The annihilating-ideal graph of $ R $ is defined as the graph $AG(R)$ with the vertex set $ mathrm{A}(R)^{*}=mathrm{A}(R)setminuslbrace 0rbrace $ and two distinct vertices $ I $ and $ J $ are adjacent if and only if $ IJ=0 $. In this paper, conditions under which $AG(R)$ is either E...

Journal: :AL-Rafidain Journal of Computer Sciences and Mathematics 2018

Journal: :algebraic structures and their applications 0
reza taheri islamic azad university, science and research branch, tehran, iran abolfazl tehranian islamic azad university, science and research branch, tehran, iran

let $r$ be a commutative ring with identity and $mathbb{a}(r)$ be the set   of ideals of $r$ with non-zero annihilators. in this paper, we first introduce and investigate the principal ideal subgraph of the annihilating-ideal graph of $r$, denoted by $mathbb{ag}_p(r)$. it is a (undirected) graph with vertices $mathbb{a}_p(r)=mathbb{a}(r)cap mathbb{p}(r)setminus {(0)}$, where   $mathbb{p}(r)$ is...

Journal: :Mathematical Sciences 2017

Journal: :AL-Rafidain Journal of Computer Sciences and Mathematics 2018

The annihilating-ideal graph of a commutative ring $R$ is denoted by $AG(R)$, whose vertices are all nonzero ideals of $R$ with nonzero annihilators and two distinct vertices $I$ and $J$ are adjacent if and only if $IJ=0$. In this article, we completely characterize rings $R$ when $gr(AG(R))neq 3$.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید