نتایج جستجو برای: arc transitive graph
تعداد نتایج: 237979 فیلتر نتایج به سال:
Following Alspach and Parsons, a metacirculant graph is a graph admitting a transitive group generated by two automorphisms ρ and σ , where ρ is (m,n)semiregular for some integers m ≥ 1, n ≥ 2, and where σ normalizes ρ, cyclically permuting the orbits of ρ in such a way that σ has at least one fixed vertex. A halfarc-transitive graph is a vertexand edgebut not arc-transitive graph. In this arti...
In this sequel to the paper ‘Arc-transitive abelian regular covers of cubic graphs’, all arc-transitive abelian regular covers of the Heawood graph are found. These covers include graphs that are 1-arc-regular, and others that are 4-arc-regular (like the Heawood graph). Remarkably, also some of these covers are 2-arc-regular.
Slovenija Abstract A vertex-transitive graph is said to be 1 2-transitive if its automor-phism group is vertex and edge but not arc-transitive. Some recent results on 1 2-transitive graphs are given, a few open problems proposed , and possible directions in the research of the structure of these graphs discussed. 1 In the beginning Throughout this paper graphs are simple and, unless otherwise s...
An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v, u, x, y) of vertices such that both (v, u, x) and (u, x, y) are paths of length two. The 3-arc graph of a graph G is defined to have vertices the arcs of G such that two arcs uv, xy are adjacent if and only if (v, u, x, y) is a 3-arc of G. In this paper we prove that any connected 3-arc graph is Hamiltonian, and all iterative 3-...
A graph Γ is said to be locally (G, 2)-arc transitive for G a subgroup of Aut(Γ) if, for any vertex α of Γ, G is transitive on the 2-arcs of Γ starting at α. In this talk, we will discuss general results involving locally (G, 2)-arc transitive graphs and recent progress toward the classification of the locally (G, 2)-arc transitive graphs, where Sz(q) ≤ G ≤ Aut(Sz(q)), q = 2 for some k ∈ N. In ...
A graph is said to be half-arc-transitive if its automorphism group acts transitively on the set of its vertices and edges but not on the set of its arcs. With each half-arc-transitive graph of valency 4 a collection of the so called alternating cycles is associated, all of which have the same even length. Half of this length is called the radius of the graph in question. Moreover, any two adja...
Let Γ be a finite G-symmetric graph whose vertex set admits a non-trivial Ginvariant partition B with block size v. A framework for studying such graphs Γ was developed by Gardiner and Praeger which involved an analysis of the quotient graph ΓB relative to B, the bipartite subgraph Γ[B,C] of Γ induced by adjacent blocks B,C of ΓB and a certain 1-design D(B) induced by a block B ∈ B. The present...
A graph X is k-arc-transitive if its automorphism group acts transitively on the set of it-arcs of X. A circulant is a Cayley graph of a cyclic group. A classification of 2-arc-transitive circulants is given.
For an integer m ≥ 3, a near m-gonal graph is a pair (Σ,E) consisting of a connected graph Σ and a set E of m-cycles of Σ such that each 2-arc of Σ is contained in exactly one member of E, where a 2-arc of Σ is an ordered triple (σ, τ, ε) of distinct vertices such that τ is adjacent to both σ and ε. The graph Σ is call (G, 2)-arc transitive, where G ≤ Aut(Σ), if G is transitive on the vertex se...
A graph is half-arc-transitive if its automorphism group acts transitively on its vertex set, edge set, but not arc set. Let p and q be primes. It is known that no tetravalent half-arc-transitive graphs of order 2p2 exist and a tetravalent half-arctransitive graph of order 4p must be non-Cayley; such a non-Cayley graph exists if and only if p − 1 is divisible by 8 and it is unique for a given o...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید