نتایج جستجو برای: asymptotically nonexpansive nonself random mapping
تعداد نتایج: 497810 فیلتر نتایج به سال:
In this paper, we extend the results of Inprasit and Wattanataweekul [7] to the class of asymptotically quasi-nonexpansive nonself-mappings in the intermediate sense. We prove some strong convergence theorems for asymptotically quasi-nonexpansive nonself-mappings in the intermediate sense using a three-step iterative method for finding a common element of the set of solutions of a generalized m...
The notion of a bead metric space is defined as a nice generalization of the uniformly convex normed space such as $CAT(0)$ space, where the curvature is bounded from above by zero. In fact, the bead spaces themselves can be considered in particular as natural extensions of convex sets in uniformly convex spaces and normed bead spaces are identical with uniformly convex spaces. In this paper, w...
In this paper, we prove the weak convergence of a modified Khan iteration for nonself I nonexpansive mapping in a Banach space which satisfies Opial’s condition. Our result extends and improves these announced by S. Chornphrom and S.Phonin [Weak Converges Theorem of Noor iterative Scheme for Nonself I-Nonexpansive mapping, Thai Journal of Mathematics Volume 7(2009) no.2:311-317].
In this paper, first, we introduce the condition (BP) which is weaker than the completely continuous mapping in Banach spaces. Second, we consider a simple iteration and prove some strong convergence theorems of the proposed iteration for an asymptotically nonexpansive nonself-mapping with the condition (BP). Finally, we give two examples to illustrate the main result in this paper. Our results...
in this paper we introduce new modified implicit and explicit algorithms and prove strong convergence of the two algorithms to a common fixed point of a family of uniformly asymptotically regularasymptotically nonexpansive mappings in a real reflexive banach space with a uniformly g$hat{a}$teaux differentiable norm. our result is applicable in $l_{p}(ell_{p})$ spaces,$1 < p
A one-step iteration with errors is considered for a family of asymptotically nonexpansive nonself mappings. Weak convergence of the purposed iteration is obtained in a Banach space.
In this paper, we introduce an iteration process for approximating common fixed points of two nonself asymptotically nonexpansive mappings in Banach spaces. Our process contains Mann iteration process and some other processes for nonself mappings but is independent of Ishikawa iteration process. We prove some weak and strong convergence theorems for this iteration process. Our results generaliz...
with kn ≥ 0, rn ≥ 0, kn → 1, rn → 0 n → ∞ , for each x, y ∈ C, n 0, 1, 2, . . . . If kn 1 and rn 0, 1.1 reduces to nonexpansive mapping; if rn 0, 1.1 reduces to asymptotically nonexpansive mapping; if kn 1, 1.1 reduces to asymptotically nonexpansive-type mapping. So, a generalized asymptotically nonexpansive mapping is much more general than many other mappings. Browder 1 introduced the followi...
In this paper, we use a new one-step iterative process to approximate the common fixed points of two nonself asymptotically nonexpansive mappings through some weak and strong convergence theorems.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید