نتایج جستجو برای: austenitic

تعداد نتایج: 3826  

The influence of the martensitic, martensitic+austenitic and austenitic structures in bending training on two-way shape memory effect (TWSME) in Ni-50.8 at %Ti and Ni-49.9 at %Ti alloys was studied. In addition of the primary structure, the effect of pre-strain, plastic strain, training cycle and training temperature on the TWSME was investigated. The prepared samples were trained in martensiti...

2015
Mattias Calmunger

Advanced heat resistant materials are important to achieve the transition to long term sustainable power generation. The global increase in energy consumption and the global warming from greenhouse gas emissions create the need for more sustainable power generation processes. Biomass-fired power plants with higher efficiency could generate more power but also reduce the emission of greenhouse g...

2010
D. PHILIP SELVARAJ P. CHANDRAMOHAN D. P. Selvaraj P. Chandramohan

The present work is concentrated with the dry turning of AISI 304 Austenitic Stainless Steel (ASS). This paper presents the influence of cutting parameters like cutting speed, feed rate and depth of cut on the surface roughness of austenitic stainless steel during dry turning. A plan of experiments based on Taguchi’s technique has been used to acquire the data. An orthogonal array, the signal t...

1996
M. A. M. Bourke R. Vaidyanathan D. C. Dunand

The formation of stress-induced martensite in superelastic NiTi was studied by neutron diffraction during uniaxial compressive loading and unloading. The respective phase fractions were determined as a function of the applied stresses using a Rietveld refinement with a March–Dollase texture formulation. Before loading, the specimen was fully austenitic. At the highest applied stress of 2625 MPa...

1997
R. Meyer

We have performed molecular dynamics simulations of Fe 80 Ni 20 alloys using an inter-atomic potential of the EAM-type which allows the simulation of the martensite-austenite transition. We present results, showing the development of an inhomogeneous shear system on a nanoscale during the thermally induced austenitic transformation. In addition to this we obtained the phonon dispersion relation...

2007
Jeremiah Johnson B. K. Reck T. Wang T. E. Graedel

The energy used to produce austenitic stainless steel was quantified throughout its entire life cycle for three scenarios: (1) current global operations, (2) 100% recycling, and (3) use of only virgin materials. Data are representative of global average operations in the early 2000s. The primary energy requirements to produce 1 metric ton of austenitic stainless steel (with assumed metals conce...

2013
Mattias Calmunger

The global increase in energy consumption and the global warming from greenhouse gas emission creates the need for more environmental friendly energy production processes. Biomass power plants with higher efficiency could generate more energy but also reduce the emission of greenhouse gases, e.g. CO2. Biomass is the largest global contributor to renewable energy and offers no net contribution o...

2014
Juho Talonen Hannu Hänninen Preet M. Singh

Austenitic carbon steels that exhibit excellent mechanical properties due to the twinning-induced plasticity effect have been studied extensively. On the other hand, austenitic stainless steels usually achieve good strength and ductility via transformation-induced plasticity. However, relying on martensite transformation for strength may cause problems such as delayed cracking. Therefore, the t...

2017
S. Yadegari

The influence of the spatial distribution of the austenitic phase on the effective mechanical properties of a multiphase steel assisted by transformation-induced plasticity is analyzed using a numerical homogenization scheme. Representative three-dimensional volume elements with distinct microstructures are created applying a newly-developed algorithm based on the generation of a multilevel Vor...

2009
M. Ivanchenko Y. Yagodzinskyy H. Hänninen

Complex two-component peak of anelastic mechanical losses was observed in multicomponent substitutional austenitic alloys after prior plastic deformation. In AISI 316L, AISI 316LN, AISI 310 and AISI 304 austenitic stainless steels, this peak is situated in the wide range of temperature from 200 to 400K. Characteristics of the observed peak for different thermo-mechanical treatments were studied...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید