نتایج جستجو برای: auxiliary particle filter

تعداد نتایج: 311668  

2007
Nick Whiteley Sumeetpal Singh Simon Godsill

Optimal Bayesian multi-target filtering is, in general, computationally impractical due to the high dimensionality of the multi-target state. Recently Mahler, [9], introduced a filter which propagates the first moment of the multi-target posterior distribution, which he called the Probability Hypothesis Density (PHD) filter. While this reduces the dimensionality of the problem, the PHD filter s...

2005
Li Tang Vijay Venkataraman Guoliang Fan

This paper addresses the issue of multi-aspect target tracking where target’s aspect is modeled by a continuous-valued affine model. The affine parameters are assumed to follow first-order Markov models and augmented with target’s kinematic parameters in the state vector. Three particle filtering algorithms, Sequential Importance Re-sampling (SIR), the Auxiliary Particle Filter (APF1), and a mo...

2008
Silvano Bordignon Davide Raggi Cesare Battisti

In this paper we propose a sequential Monte Carlo algorithm to estimate a stochastic volatility model with leverage effects and non constant conditional mean and jumps. We are interested in estimating the time invariant parameters and the non-observable dynamics involved in the model. Our idea relies on the auxiliary particle filter algorithm mixed together with Markov Chain Monte Carlo (MCMC) ...

2003
Hammadi Nait-Charif Stephen J. McKenna

Human motion in cluttered scenes is often tracked using particle filtering. However, poorly modelled inter-frame motion is not uncommon, resulting in poor priors for the filtering step. Alternatives to the Condensation algorithm in the form of an Auxiliary Particle Filter (APF) and Iterated Likelihood Weighting (ILW) are described. Experimental results comparing these filters’ accuracy and cons...

2008
Adam M. Johansen Arnaud Doucet

The Auxiliary Particle Filter (APF) introduced by Pitt and Shephard (1999) is a very popular alternative to Sequential Importance Sampling and Resampling (SISR) algorithms to perform inference in state-space models. We propose a novel interpretation of the APF as an SISR algorithm. This interpretation allows us to present simple guidelines to ensure good performance of the APF and the first con...

2013
Neil Shephard

I discuss models which allow the local level model, which rationalised exponentially weighted moving averages, to have a time-varying signal/noise ratio. I call this a martingale component model. This makes the rate of discounting of data local. I show how to handle such models effectively using an auxiliary particle filter which deploys M Kalman filters run in parallel competing against one an...

Journal: :Image Vision Comput. 2007
Stephen J. McKenna Hammadi Nait-Charif

Bayesian particle filters have become popular for tracking human motion in cluttered scenes. The most commonly used filters suffer from two drawbacks. First, the prior used for the filtering step is often poor due to relatively large, poorly modelled inter-frame motion. Second, the use of the prior as an importance function results in inefficient sampling of the posterior. The use of the auxili...

Journal: :Robotics and Autonomous Systems 2006
Takashi Bando Tomohiro Shibata Kenji Doya Shin Ishii

In this article, we propose a new particle filtering scheme, called a switching particle filter, which allows robust and accurate visual tracking under typical circumstances of real-time visual tracking. This scheme switches two complementary sampling algorithms, Condensation and Auxiliary Particle Filter, in an on-line fashion based on the confidence of the filtered state of the visual target....

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید