نتایج جستجو برای: bessel fusion sequence
تعداد نتایج: 521406 فیلتر نتایج به سال:
in this paper, we establish some new results in ultra bessel sequences and ultra bessel sequences of subspaces. also, we investigate ultra bessel sequences in direct sums of hilbert spaces.specially, we show that {( fi, gi)}∞ i=1 is a an ultra bessel sequencefor hilbert space h ⊕ k if and only if { fi}∞ i=1 and {gi}∞ i=1 are ultrabessel sequences for hilbert spaces h and k, respectively.
Abstract. Block sequences with respect to frames in Hilbert spaces have been defined. Examples have been provided to show that a block sequence with respect to a given frame may not even be a Bessel sequence. Also, a necessary and sufficient condition under which a block sequence with respect to a frame is a frame has been given. Further, applications of block sequences to obtain Fusion frames ...
Fusion frames are an extension to frames that provide a framework for applications and providing efficient and robust information processing algorithms. In this article we study the erasure of subspaces of a fusion frame.
in this paper, we give a necessary condition for function in l^2with its dual to generate a dual shearlet tight frame with respect to admissibility.
In this paper, we study approximate duals of $g$-frames and fusion frames in Hilbert $C^ast-$modules. We get some relations between approximate duals of $g$-frames and biorthogonal Bessel sequences, and using these relations, some results for approximate duals of modular Riesz bases and fusion frames are obtained. Moreover, we generalize the concept of $Q-$approximate duality of $g$-frames and ...
In this paper, we show that in each nite dimensional Hilbert space, a frame of subspaces is an ultra Bessel sequence of subspaces. We also show that every frame of subspaces in a nite dimensional Hilbert space has frameness bound.
in this paper, we show that in each nite dimensional hilbert space, a frame of subspaces is an ultra bessel sequence of subspaces. we also show that every frame of subspaces in a nite dimensional hilbert space has frameness bound.
In this article, we show that a finite dimensional Hilbert space can have an infinite Bessel sequence, but a normalized Bessel sequence in a finite dimensional Hilbert space must be of finite length. A relation between the dimension of a given finite dimensional Hilbert space and the bound of any finite normalized tight frame for the underlying space is obtained. Also some properties of the fra...
let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . in this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . as an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via the linear operator .
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید