نتایج جستجو برای: d derivation

تعداد نتایج: 607386  

The main purpose of this article is to offer some characterizations of $delta$-double derivations on rings and algebras. To reach this goal, we prove the following theorem:Let $n > 1$ be an integer and let $mathcal{R}$ be an $n!$-torsion free ring with the identity element $1$. Suppose that there exist two additive mappings $d,delta:Rto R$ such that $$d(x^n) =Sigma^n_{j=1} x^{n-j}d(x)x^{j-1}+Si...

Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.

Journal: :journal of linear and topological algebra (jlta) 0
s ebrahimi payame noor university

let x be a banach space of dimx > 2 and b(x) be the space of bounded linear operators on x. if l : b(x) → b(x) be a lie higher derivation on b(x), then there exists an additive higher derivation d and a linear map τ : b(x) → fi vanishing at commutators [a, b] for all a, b ∈ b(x) such that l = d + τ

Journal: :bulletin of the iranian mathematical society 0
f. zhang school of science‎, ‎xi'an university of posts and telecommunications‎, ‎xi'an 710121‎, ‎p‎. ‎r. china. j. ‎zhang college of mathematics and information science‎, ‎shaanxi normal university‎, ‎xi'an 710062‎, ‎p‎. ‎r china. j. ‎zhang college of mathematics and information science‎, ‎shaanxi normal university‎, ‎xi'an 710062‎, ‎p‎. ‎r china.

let $mathcal m$ be a factor von neumann algebra. it is shown that every nonlinear $*$-lie higher derivation$d={phi_{n}}_{ninmathbb{n}}$ on $mathcal m$ is additive. in particular, if $mathcal m$ is infinite type $i$factor, a concrete characterization of $d$ is given.

‎Let $R$ be a $*$-prime ring with center‎ ‎$Z(R)$‎, ‎$d$ a non-zero $(sigma,tau)$-derivation of $R$ with associated‎ ‎automorphisms $sigma$ and $tau$ of $R$‎, ‎such that $sigma$‎, ‎$tau$‎ ‎and $d$ commute with $'*'$‎. ‎Suppose that $U$ is an ideal of $R$ such that $U^*=U$‎, ‎and $C_{sigma,tau}={cin‎ ‎R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.$ In the present paper‎, ‎it is shown that if charac...

2012
Yong Ho Yon Kyung Ho Kim

The aim of this paper is to introduce the notion of derivations of subtraction algebras. We define a derivation of a subtraction algebra X as a function d on X satisfying d(x − y) = (d(x) − y) ∧ (x − d(y)) for all x, y ∈ X. Then it is characterized as a function d satisfying d(x− y) = d(x)− y for all x, y ∈ X. Also we define a simple derivation as a function da on X satisfying da(x) = x−a for a...

Journal: :bulletin of the iranian mathematical society 0
m. ashraf department of mathematics,‎ ‎aligarh muslim university‎, ‎aligarh‎, ‎202002, india. n. parveen department of mathematics,‎ ‎aligarh muslim university‎, ‎aligarh‎, ‎202002, ‎india.

‎let $r$ be a $*$-prime ring with center‎ ‎$z(r)$‎, ‎$d$ a non-zero $(sigma,tau)$-derivation of $r$ with associated‎ ‎automorphisms $sigma$ and $tau$ of $r$‎, ‎such that $sigma$‎, ‎$tau$‎ ‎and $d$ commute with $'*'$‎. ‎suppose that $u$ is an ideal of $r$ such that $u^*=u$‎, ‎and $c_{sigma,tau}={cin‎ ‎r~|~csigma(x)=tau(x)c~mbox{for~all}~xin r}.$ in the present paper‎, ‎it is shown that...

This paper is an attempt to prove the following result:Let $n>1$ be an integer and let $mathcal{R}$ be a $n!$-torsion-free ring with the identity element. Suppose that $d, delta, varepsilon$ are additive mappings satisfyingbegin{equation}d(x^n) = sum^{n}_{j=1}x^{n-j}d(x)x^{j-1}+sum^{n-1}_{j=1}sum^{j}_{i=1}x^{n-1-j}Big(delta(x)x^{j-i}varepsilon(x)+varepsilon(x)x^{j-i}delta(x)Big)x^{i-1}quadend{e...

Journal: :journal of sciences, islamic republic of iran 2013
h. mahdavian rad a. niknam

let  be a banach algebra. let  be linear mappings on . first we demonstrate a theorem concerning the continuity of double derivations; especially that all of -double derivations are continuous on semi-simple banach algebras, in certain case. afterwards we define a new vocabulary called “-higher double derivation” and present a relation between this subject and derivations and finally give some ...

A. Ebadian, M. Eshaghi Gordji,

In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map $d:mathcal Ato mathcal M$ from a von Neumann algebra $mathcal A$ into a Banach $mathcal A-$module $mathcal M$ with property that $d(p^2)=2pd(p)$ for every projection $p$ in $mathcal A$ is a left Jordan derivation.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید