نتایج جستجو برای: doubly regular tournament
تعداد نتایج: 137080 فیلتر نتایج به سال:
An n × n complex matrix A is h-pseudo-tournament if A + A∗ = hh∗ − I, where h is a complex, non-zero column vector. The class of h-pseudo-tournament matrices is a generalization of the well studied tournament-like matrices: h-hypertournament matrices, generalized tournament matrices and tournament matrices. In this paper we derive new spectral properties of an h-pseudo-tournament matrix. When t...
If x is a vertex of a digraph D, then we denote by d(x) and d−(x) the outdegree and the indegree of x, respectively. The global irregularity of a digraph D is defined by ig(D) = max{d+(x), d−(x)}−min{d+(y), d−(y)} over all vertices x and y of D (including x = y). If ig(D) = 0, then D is regular and if ig(D) ≤ 1, then D is almost regular. A c-partite tournament is an orientation of a complete c-...
We show that every regular tournament on n vertices has at least n!/(2+o(1)) Hamiltonian cycles, thus answering a question of Thomassen [17] and providing a partial answer to a question of Friedgut and Kahn [7]. This compares to an upper bound of about O(nn!/2) for arbitrary tournaments due to Friedgut and Kahn (somewhat improving Alon’s bound of O(nn!/2)). A key ingredient of the proof is a ma...
Let e(Tn) be the primitive exponent of a primitive tournament Tn of order n. In this paper, we obtain the following results. 1. Let Tn be a regular or almost regular tournament of order n ≥ 7; then e(Tn) = 3. 2. Let k ∈ {n, n + 1, n + 2}. We give the sufficient and necessary conditions for Tn such that e(Tn) = k, and obtain all Tn’s such that e(Tn) = k.
An orientation of a complete graph is a tournament, and an orientation of a complete n-partite graph is an n-partite tournament. For each n 2:: 4, there exist examples of strongly connected n-partite tournament without any strongly connected subtournaments of order p 2:: 4. If D is a digraph, then let d+ (x) be the out degree and d(x) the indegree of the vertex x in D. The minimum (maximum) out...
Let T be a 3-partite tournament. We say that a vertex v is −→ C3 -free if v does not lie on any directed triangle of T . Let F3(T ) be the set of the −→ C3 -free vertices in a 3-partite tournament and f3(T ) its cardinality. In this paper we prove that if T is a regular 3-partite tournament, then F3(T )must be contained in one of the partite sets of T . It is also shown that for every regular 3...
A tournament is an orientation of a complete graph, and in general a multipartite or c-partite tournament is an orientation of a complete c-partite graph. If x is a vertex of a digraph D, then we denote by d(x) and d−(x) the outdegree and the indegree of x, respectively. The global irregularity of a digraph D is de6ned by ig(D) = max{d+(x); d−(x)} − min{d+(y); d−(y)} over all vertices x and y o...
Let A be a (0, 1, ∗)-matrix with main diagonal all 0’s and such that if ai,j = 1 or ∗ then aj,i = ∗ or 0. Underwhat conditions on the row sums, and or column sums, of A is it possible to change the ∗’s to 0’s or 1’s and obtain a tournament matrix (the adjacency matrix of a tournament) with a specified score sequence? We answer this question in the case of regular and nearly regular tournaments....
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید