نتایج جستجو برای: eccentricity index
تعداد نتایج: 401509 فیلتر نتایج به سال:
The eccentricity of a vertex is the maximum distance from it to another vertex and the average eccentricity ecc(G) of a graph G is the mean value of eccentricities of all vertices of G. The average eccentricity is deeply connected with a topological descriptor called the eccentric connectivity index, defined as a sum of products of vertex degrees and eccentricities. In this paper we analyze ext...
In this paper, we calculate the eccentric connectivity index and the eccentricity sequence of two infinite classes of fullerenes with 50 + 10k and 60 + 12k (k in N) carbon atoms.
The eccentricity of a vertex is the maximum distance from it to another vertex and the average eccentricity ecc(G) of a graph G is the mean value of eccentricities of all vertices of G. In this paper we resolve five conjectures, obtained by the system AutoGraphiX, about the average eccentricity and other graph parameters (independence number, chromatic number and the Randić index), and refute t...
The augmented eccentric connectivity index of a graph which is a generalization of eccentric connectivity index is defined as the summation of the quotients of the product of adjacent vertex degrees and eccentricity of the concerned vertex of a graph. In this paper we established some relationships between augmented eccentric connectivity index and several other graph invariants like number of ...
We study eccentricity-based indices such as Zagreb eccentricity indices, general index and total index. present exact values of generalized networks related to binary $m$-ary trees, where $m \ge 2$.
Abstract Analogues to multiplicative Zagreb indices in this paper two new type of eccentricity related topological index are introduced called the first and second multiplicative Zagreb eccentricity indices and is defined as product of squares of the eccentricities of the vertices and product of product of the eccentricities of the adjacent vertices. In this paper we give some upper and lower b...
The eccentricity connectivity index of a molecular graph G is defined as (G) = aV(G) deg(a)ε(a), where ε(a) is defined as the length of a maximal path connecting a to other vertices of G and deg(a) is degree of vertex a. Here, we compute this topological index for some infinite classes of dendrimer graphs.
The geometric-arithmetic index is another topological index was defined as 2 deg ( )deg ( ) ( ) deg ( ) deg ( ) G G uv E G G u v GA G u v , in which degree of vertex u denoted by degG (u). We now define a new version of GA index as 4 ( ) 2 ε ( )ε ( ) ( ) ε ( ) ε ( ) G G e uv E G G G u v GA G u v , where εG(u) is the eccentricity of vertex u. In this paper we compute this new t...
if $g$ is a connected graph with vertex set $v$, then the eccentric connectivity index of $g$, $xi^c(g)$, is defined as $sum_{vin v(g)}deg(v)ecc(v)$ where $deg(v)$ is the degree of a vertex $v$ and $ecc(v)$ is its eccentricity. in this paper we show some convergence in probability and an asymptotic normality based on this index in random bucket recursive trees.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید