نتایج جستجو برای: exoskeleton backdrivability
تعداد نتایج: 2470 فیلتر نتایج به سال:
Introduction: The use of exoskeletons as a new ergonomics intervention to reduce musculoskeletal disorders risk factors and increase human performance has emerged in the fourth-generation industrial revolution. The aim of this study was to assess the cervical exoskeleton effect on the neck and shoulder muscles electrical activity. Material and Methods: In this experimental study, 14 male parti...
This article presents a wearable lower extremity exoskeleton (LEE) developed to enhance the ability of a human’s walking while carrying heavy loads. The ultimate goal of the current research work is to design and control a power assist system that integrates a human’s intellect for feedback and sensory purposes. The exoskeleton system in this work consists of an inner exoskeleton and an outer e...
A novel balance control method for a humanoid robot is presented. It consists of a contact torque controller which is designed to have a good backdrivability and a feedback control of the total angular momentum and the center of gravity of a robot. A simulation result of a balance control using a 26 DOF humanoid robot model is shown.
Exoskeleton is a type of wearable robots that can augment the performance of an able-bodied user. There are many studies that use hydraulic actuator to actuate the lower limb exoskeleton which possesses several drawbacks like dirty, noisy and high power consumption. Therefore, electrical actuators that are clean, silent and less power consuming are used in designing the lower limb exoskeleton i...
BACKGROUND Despite a large increase in robotic exoskeleton research, there are few studies that have examined human performance with different control strategies on the same exoskeleton device. Direct comparison studies are needed to determine how users respond to different types of control. The purpose of this study was to compare user performance using a robotic hip exoskeleton with two diffe...
Purpose – To describe the design methodology and human-centre functionality of the whole arm manipulator (WAM) developed originally at MIT and brought to commercial fruition by Barrett Technology. Design/methodology/approach – The WAM arm is driven by cable-and-cylinder transmissions, which uniquely exhibits zero backlash with low friction and low inertia, endowing the WAM with good open-loop “...
An approach to the design of wearable exoskeletons on the basis of simulation of the exoskeleton and a human body model is proposed in this paper. The new approach, addressing the problem of physical human-exoskeleton interactions, models and simulates the mechanics of both the exoskeleton and the human body, which allows designers to effectively analyze and evaluate an exoskeleton design for t...
We developed an upper-limb power-assist exoskeleton actuated by pneumatic muscles. The exoskeleton included two metal links: a nylon joint, four size-adjustable carbon fiber bracers, a potentiometer and two pneumatic muscles. The proportional myoelectric control method was proposed to control the exoskeleton according to the user's motion intention in real time. With the feature extraction proc...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید