نتایج جستجو برای: f index
تعداد نتایج: 689960 فیلتر نتایج به سال:
The F-index of a graph G is the sum of the cubes of the degrees of the vertices of G. In this paper, explicit expressions for the F-index of different transformation graphs of type Gxyz with x, y, z ∈ {−,+} are obtained. F-index for semitotal point graph and semitotal line graph are also obtained here. MSC (2010): Primary: 05C35; Secondary: 05C07, 05C40
The first general Zagreb index is defined as Mλ 1 (G) = ∑ v∈V (G) dG(v) λ where λ ∈ R − {0, 1}. The case λ = 3, is called F-index. Similarly, reformulated first general Zagreb index is defined in terms of edge-drees as EMλ 1 (G) = ∑ e∈E(G) dG(e) λ and the reformulated F-index is RF (G) = ∑ e∈E(G) dG(e) 3. In this paper, we compute the reformulated F-index for some graph operations.
The F-index of a graph is defined as the sum of cubes of the vertex degrees of the graph which was introduced in 1972, in the same paper where the first and second Zagreb indices were introduced. In this paper we study the F-index of four operations on graphs which were introduced by Eliasi and Taeri [M. Eliasi, B. Taeri, Four new sums of graphs and their Wiener indices, Discrete Appl. Math.157...
For an arbitrary infinite field k of characteristic p > 0, we completely describe the structure of a block of the algebraic monoid Mn(k) (all n×n matrices over k), or, equivalently, a block of the Schur algebra S(n, p), whose simple modules are indexed by p-hook partitions. This leads to a character formula for certain simple GLn(k)-modules, valid for all n and all p.
let $g=(v,e)$ be a simple graph. an edge labeling $f:eto {0,1}$ induces a vertex labeling $f^+:vtoz_2$ defined by $f^+(v)equiv sumlimits_{uvin e} f(uv)pmod{2}$ for each $v in v$, where $z_2={0,1}$ is the additive group of order 2. for $iin{0,1}$, let $e_f(i)=|f^{-1}(i)|$ and $v_f(i)=|(f^+)^{-1}(i)|$. a labeling $f$ is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. $i_f(g)=v_f(...
Let f(x; y) be a real polynomial of degree d with isolated critical points, and let i be the index of grad f around a large circle containing the critical points. An elementary argument shows that jij d ? 1. In this paper we show that i maxf1; d ? 3g. We also show that if all the level sets of f are compact, then i = 1, and otherwise jij d R ? 1 where d R is the sum of the multiplicities of the...
Let Z2 = {0, 1} and G = (V ,E) be a graph. A labeling f : V → Z2 induces an edge labeling f* : E →Z2 defined by f*(uv) = f(u).f (v). For i ε Z2 let vf (i) = v(i) = card{v ε V : f(v) = i} and ef (i) = e(i) = {e ε E : f*(e) = i}. A labeling f is said to be Vertex-friendly if | v(0) − v(1) |≤ 1. The vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. In this paper ...
let z2 = {0, 1} and g = (v ,e) be a graph. a labeling f : v → z2 induces an edge labeling f* : e →z2 defined by f*(uv) = f(u).f (v). for i ε z2 let vf (i) = v(i) = card{v ε v : f(v) = i} and ef (i) = e(i) = {e ε e : f*(e) = i}. a labeling f is said to be vertex-friendly if | v(0) − v(1) |≤ 1. the vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. in this paper ...
let g=(v,e) be a simple graph. an edge labeling f:e to {0,1} induces a vertex labeling f^+:v to z_2 defined by $f^+(v)equiv sumlimits_{uvin e} f(uv)pmod{2}$ for each $v in v$, where z_2={0,1} is the additive group of order 2. for $iin{0,1}$, let e_f(i)=|f^{-1}(i)| and v_f(i)=|(f^+)^{-1}(i)|. a labeling f is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. i_f(g)=v_f(1)-v_f(0) is called the edge-f...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید