نتایج جستجو برای: finite conjugacy classes

تعداد نتایج: 408814  

In this paper we classify all finite solvable groups satisfying the following property P5: their orders of representatives are set-wise relatively prime for any 5 distinct non-central conjugacy classes.

‎Let $G$ be a finite group and $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$‎. ‎In this paper‎, ‎all nilpotent groups $G$ with $nu(G)=3$ are classified‎.  

‎Let $G$ be a finite group‎. ‎We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$‎. ‎In this paper we characterize solvable groups $G$ in which the derived covering number is finite‎.‎ 

Journal: :international journal of group theory 2014
hamid mousavi

‎for a finite group $g$ let $nu(g)$ denote the number of conjugacy classes of non-normal subgroups of $g$‎. ‎the aim of this paper is to classify all the non-nilpotent groups with $nu(g)=3$‎.

‎Let G be a finite group and Z(G) be the center of G‎. ‎For a subset A of G‎, ‎we define kG(A)‎, ‎the number of conjugacy classes of G that intersect A non-trivially‎. ‎In this paper‎, ‎we verify the structure of all finite groups G which satisfy the property kG(G-Z(G))=5, and classify them‎.

Journal: :journal of algebraic system 0
m. rezaei department of mathematics, buein zahra technical university, buein zahra, qazvin, iran. z. foruzanfar buein zahra technical university, buein zahra, qazvin, iran.

‎let $g$ be a finite group and $z(g)$ be the center of $g$‎. ‎for a subset $a$ of $g$‎, ‎we define $k_g(a)$‎, ‎the number of conjugacy classes of $g$ which intersect $a$ non-trivially‎. ‎in this paper‎, ‎we verify the structure of all finite groups $g$ which satisfy the property $k_g(g-z(g))=5$ and classify them‎.

‎In this paper we prove that a finite group $G$ having at most three‎ ‎conjugacy classes of non-normal non-abelian proper subgroups is‎ ‎always solvable except for $Gcong{rm{A_5}}$‎, ‎which extends Theorem 3.3‎ ‎in [Some sufficient conditions on the number of‎ ‎non-abelian subgroups of a finite group to be solvable‎, ‎Acta Math‎. ‎Sinica (English Series) 27 (2011) 891--896.]‎. ‎Moreover‎, ‎we s...

2012
ROBERT GURALNICK GUNTER MALLE Robert Steinberg

We prove the Arad–Herzog conjecture for various families of finite simple groups — if A and B are nontrivial conjugacy classes, then AB is not a conjugacy class. We also prove that if G is a finite simple group of Lie type and A and B are nontrivial conjugacy classes, either both semisimple or both unipotent, then AB is not a conjugacy class. We also prove a strong version of the Arad–Herzog co...

Journal: :international journal of group theory 2012
zoltan halasi attila maroti franciska petenyi

we say that a finite group $g$ is conjugacy expansive if for anynormal subset $s$ and any conjugacy class $c$ of $g$ the normalset $sc$ consists of at least as many conjugacy classes of $g$ as$s$ does. halasi, mar'oti, sidki, bezerra have shown that a groupis conjugacy expansive if and only if it is a direct product ofconjugacy expansive simple or abelian groups.by considering a character analo...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید