نتایج جستجو برای: finite conjugacy classes
تعداد نتایج: 408814 فیلتر نتایج به سال:
In this paper we classify all finite solvable groups satisfying the following property P5: their orders of representatives are set-wise relatively prime for any 5 distinct non-central conjugacy classes.
Let $G$ be a finite group and $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. In this paper, all nilpotent groups $G$ with $nu(G)=3$ are classified.
Let $G$ be a finite group. We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$. In this paper we characterize solvable groups $G$ in which the derived covering number is finite.
for a finite group $g$ let $nu(g)$ denote the number of conjugacy classes of non-normal subgroups of $g$. the aim of this paper is to classify all the non-nilpotent groups with $nu(g)=3$.
Let G be a finite group and Z(G) be the center of G. For a subset A of G, we define kG(A), the number of conjugacy classes of G that intersect A non-trivially. In this paper, we verify the structure of all finite groups G which satisfy the property kG(G-Z(G))=5, and classify them.
let $g$ be a finite group and $z(g)$ be the center of $g$. for a subset $a$ of $g$, we define $k_g(a)$, the number of conjugacy classes of $g$ which intersect $a$ non-trivially. in this paper, we verify the structure of all finite groups $g$ which satisfy the property $k_g(g-z(g))=5$ and classify them.
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
We prove the Arad–Herzog conjecture for various families of finite simple groups — if A and B are nontrivial conjugacy classes, then AB is not a conjugacy class. We also prove that if G is a finite simple group of Lie type and A and B are nontrivial conjugacy classes, either both semisimple or both unipotent, then AB is not a conjugacy class. We also prove a strong version of the Arad–Herzog co...
we say that a finite group $g$ is conjugacy expansive if for anynormal subset $s$ and any conjugacy class $c$ of $g$ the normalset $sc$ consists of at least as many conjugacy classes of $g$ as$s$ does. halasi, mar'oti, sidki, bezerra have shown that a groupis conjugacy expansive if and only if it is a direct product ofconjugacy expansive simple or abelian groups.by considering a character analo...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید