نتایج جستجو برای: fourth order formulation
تعداد نتایج: 1053918 فیلتر نتایج به سال:
Higher-order finite-volume flux operators for transport algorithms used within Runge–Kutta time integration schemes on irregular Voronoi (hexagonal) meshes are proposed and tested. These operators are generalizations of thirdand fourth-order operators currently used in atmospheric models employing regular, orthogonal rectangular meshes. Two-dimensional least squares fit polynomials are used to ...
In this paper, the formulation of a new group explicit method with a fourth order accuracy is described in solving the two dimensional Helmholtz equation. The formulation is based on the nine-point fourth order compact finite difference approximation formula. The complexity analysis of the developed scheme is also presented. Several numerical experiments were conducted to test the feasibility o...
In this paper we review fourth-order approximations of the biharmonic operator in one, two and three dimensions. In addition, we describe recent developments on second and fourth order finite difference approximations of the two dimensional Navier-Stokes equations. The schemes are compact both for the biharmonic and the Laplacian operators. For the convective term the fourth order scheme invoke...
We investigate the formulation and implementation of new explicit group iterative methods in solving the two-dimensional Poisson equation with Dirichlet boundary conditions. The methods are derived from a fourth order compact nine point finite difference discretization. The methods are compared with the existing second order standard five point formula to show the dramatic improvement in comput...
The structure of symplectic integrators up to fourth order can be completely and analytically understood when the factorization (split) coefficients are related linearly but with a uniform nonlinear proportional factor. The analytic form of these extended-linear symplectic integrators greatly simplified proofs of their general properties and allowed easy construction of both forward and nonforw...
The structure of symplectic integrators up to fourth-order can be completely and analytical understood when the factorization (split) coefficents are related linearly but with a uniform nonlinear proportional factor. The analytic form of these extended-linear symplectic integrators greatly simplified proofs of their general properties and allowed easy construction of both forward and non-forwar...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید