نتایج جستجو برای: fractional integro differential equations

تعداد نتایج: 514289  

2013
M. H. Saleh S. M. Amer M. A. Shaalan

In this paper will be compared between Adomian decomposition method (ADM) and Taylor expansion method (TEM) for solving (approximately) a class of fractional integro-differential equations. Numerical examples are presented to illustrate the efficiency and accuracy of the proposed methods. General Terms Numerical solutions, Fractional integro-differential equations.

The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...

2009
V. E. Tarasov

We prove that the electromagnetic fields in dielectric media whose susceptibility follows a fractional powerlaw dependence in a wide frequency range can be described by differential equations with time derivatives of noninteger order. We obtain fractional integro-differential equations for electromagnetic waves in a dielectric. The electromagnetic fields in dielectrics demonstrate a fractional ...

Journal: :computational methods for differential equations 0
mohammadreza ahmadi darani department of applied mathematics, faculty of mathematical sciences, shahrekord university, p.o. box 115, shahrekord, iran. shirin bagheri faculty of basic sciences, islamic azad university, science and research branch, p. o. box 14515/775, tehran, iran

the construction of fractional type of flatlet biorthogonal multiwavelet system is investigated in this paper. we apply this system as basis functions to solve the fractional differential and integro-differential equations. biorthogonality and high vanishing moments of this system are two major properties which lead to the good approximation for the solutions of the given problems. some test pr...

2010
Henri Berestycki Jean-Michel Roquejoffre Luca Rossi

Fractional diffusions arise in the study of models from population dynamics. In this paper, we derive a class of integro-differential reactiondiffusion equations from simple principles. We then prove an approximation result for the first eigenvalue of linear integro-differential operators of the fractional diffusion type, and we study from that the dynamics of a population in a fragmented envir...

The construction of fractional type of flatlet biorthogonal multiwavelet system is investigated in this paper. We apply this system as basis functions to solve the fractional differential and integro-differential equations. Biorthogonality and high vanishing moments of this system are two major properties which lead to the good approximation for the solutions of the given problems. Some test pr...

In this paper, we exhibit two methods to numerically solve the fractional integro differential equations and then proceed to compare the results of their applications on different problems. For this purpose, at first shifted Jacobi polynomials are introduced and then operational matrices of the shifted Jacobi polynomials are stated. Then these equations are solved by two methods: Caputo fractio...

E. Babolian, P. Rahimkhani, Y. Ordokhani,

In this paper, a Bernoulli pseudo-spectral method for solving nonlinear fractional Volterra integro-differential equations is considered. First existence of a unique solution for the problem under study is proved. Then the Caputo fractional derivative and Riemman-Liouville fractional integral properties are employed to derive the new approximate formula for unknown function of the problem....

2013
Mingxu Yi Jun Huang Lifeng Wang

In this paper, operational matrix method based upon the Bernstein polynomials is proposed to solve the variable order fractional integro-differential equations in the Caputo derivative sense. We derive the Bernstein polynomials operational matrix of fractional order integration and introduce the product operational matrix of Bernstein polynomials. A truncated the Bernstein polynomials series to...

Journal: :J. Optimization Theory and Applications 2013
Samia Bushnaq Shaher Momani Yong Zhou

In this article, we implement a relatively new analytical technique, the reproducing kernel Hilbert space method (RKHSM), for solving integro-differential equations of fractional order. The solution obtained by using the method takes the form of a convergent series with easily computable components. Two numerical examples are studied to demonstrate the accuracy of the present method. The presen...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید