نتایج جستجو برای: gauss lobatto points
تعداد نتایج: 275376 فیلتر نتایج به سال:
This paper is devoted to a rigorous analysis of exponential convergence of polynomial interpolation and spectral differentiation based on the Gegenbauer-Gauss and Gegenbauer-Gauss-Lobatto points, when the underlying function is analytic on and within an ellipse. Sharp error estimates in the maximum norm are derived.
We compute point sets on the triangle that have low Lebesgue constant, with sixfold symmetries and Gauss-Legendre-Lobatto distribution on the sides, up to interpolation degree 18. Such points have the best Lebesgue constants among the families of symmetric points used so far in the framework of triangular spectral elements.
This paper describes a simple but effective technique for reducing dispersion errors in finite element solutions of timeharmonic wave propagation problems. The method involves a simple shift of the integration points to locations away from conventional Gauss or Gauss–Lobatto integration points. For bilinear rectangular elements, such a shift results in fourth-order accuracy with respect to disp...
In this article, a shifted Legendre tau method is introduced to get a direct solution technique for solving multi-order fractional differential equations (FDEs) with constant coefficients subject to multi-point boundary conditions. The fractional derivative is described in the Caputo sense. Also, this article reports a systematic quadrature tau method for numerically solving multi-point boundar...
We introduce a new and eecient Chebyshev-Legendre Galerkin method for elliptic problems. The new method is based on a Legendre-Galerkin formulation, but only the Chebyshev-Gauss-Lobatto points are used in the computation. Hence, it enjoys advantages of both the Legendre-Galerkin and Chebyshev-Galerkin methods.
In this paper we present explicit formulas for discrete orthogonal polynomials over the so-called Gauss-Lobatto Chebyshev points. We also give the “three-term recurrence relation” to construct such polynomials. As a numerical application, we apply our formulas to the least-squares problem.
This paper pursues obtaining Jacobi spectral collocation methods to solve Caputo fractional differential equations numerically. We used the shifted Jacobi–Gauss–Lobatto or Jacobi–Gauss–Radau quadrature nodes as points and derived differentiation matrices for derivatives. With matrices, were transformed into linear systems, which are easier solve. Two types of numerical simulations, results demo...
In this article we study the implementation of the Nonlinear Galerkin method as a multiresolution method when a two-level Chebyshev-collocation discretization is used. A fine grid containing an even number of Gauss-Lobatto points is considered. The grid is decomposed into two coarse grids based on half as many Gauss-Radau points. This splitting suggests a decomposition of the unknowns in low mo...
In this paper, we examine the influence of numerical integration on finite element methods using quadrilateral or hexahedral meshes in the time domain. We pay special attention to the use of Gauss-Lobatto points to perform mass lumping for any element order. We provide some theoretical results through several error estimates that are completed by various numerical experiments. c © ??? John Wile...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید