نتایج جستجو برای: generalized hyers ulam rassias stability

تعداد نتایج: 461501  

In this paper, we prove the generalized Hyers-Ulam(or Hyers-Ulam-Rassias ) stability of the following composite functional equation f(f(x)-f(y))=f(x+y)+f(x-y)-f(x)-f(y) in various normed spaces.

Journal: :bulletin of the iranian mathematical society 0
h. azadi kenary yasouj university

in this paper, we prove the generalized hyers-ulam(or hyers-ulam-rassias ) stability of the following composite functional equation f(f(x)-f(y))=f(x+y)+f(x-y)-f(x)-f(y) in various normed spaces.

2007
AHMED CHARIFI BELAID BOUIKHALENE

In this paper, we obtain the Hyers–Ulam–Rassias stability of the generalized Pexider functional equation ∑ k∈K f(x+ k · y) = |K|g(x) + |K|h(y), x, y ∈ G, where G is an abelian group, K is a finite abelian subgroup of the group of automorphism of G. The concept of Hyers–Ulam–Rassias stability originated from Th.M. Rassias’ Stability Theorem that appeared in his paper: On the stability of the lin...

Journal: :bulletin of the iranian mathematical society 2013
h. azadi kenary

in this paper, we prove the generalized hyers-ulam(or hyers-ulam-rassias ) stability of the following composite functional equation f(f(x)-f(y))=f(x+y)+f(x-y)-f(x)-f(y) in various normed spaces.

2002
GWANG HUI KIM BING XU WEINIAN ZHANG

for some positive constant ε depending only on δ. Sometimes we call f a δ-approximate solution of (1.1) and g ε-close to f . Such an idea of stability was given by Ulam [13] for Cauchy equation f(x+y) = f(x)+f(y) and his problem was solved by Hyers [4]. Later, the Hyers-Ulam stability was studied extensively (see, e.g., [6, 8, 10, 11]). Moreover, such a concept is also generalized in [2, 3, 12]...

2005
Mohammad Sal Moslehian

The generalized Hyers–Ulam–Rassias stability of generalized derivations on unital normed algebras into Banach bimodules is established. ∗2000 Mathematics Subject Classification. Primary 39B82; Secondary 46H25, 39B52, 47B47.

2009
Choonkil Park

The stability problem of functional equations originated from a question of Ulam 1 concerning the stability of group homomorphisms. Hyers 2 gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki 3 for additive mappings and by Th. M. Rassias 4 for linear mappings by considering an unbounded Cauchy difference. The paper of Th. M. ...

A. Najati C. Park

Using the Hyers-Ulam-Rassias stability method, weinvestigate isomorphisms in Banach algebras and derivations onBanach algebras associated with the following generalized additivefunctional inequalitybegin{eqnarray}|af(x)+bf(y)+cf(z)|  le  |f(alpha x+ beta y+gamma z)| .end{eqnarray}Moreover, we prove the Hyers-Ulam-Rassias stability of homomorphismsin Banach algebras and of derivations on Banach ...

2010
H. AZADI Themistocles M. Rassias

Recently, in [5], Najati and Moradlou proved Hyers-Ulam-Rassias stability of the following quadratic mapping of Apollonius type Q(z − x) + Q(z − y) = 1 2 Q(x− y) + 2Q ( z − x + y 2 ) in non-Archimedean space. In this paper we establish Hyers-Ulam-Rassias stability of this functional equation in random normed spaces by direct method and fixed point method. The concept of Hyers-Ulam-Rassias stabi...

Journal: :bulletin of the iranian mathematical society 2015
m. s. shiri h. azadi kenary

in this paper, using the fixed point and direct methods, we prove the generalized hyers-ulam-rassias stability of the following cauchy-jensen additive functional equation: begin{equation}label{main} fleft(frac{x+y+z}{2}right)+fleft(frac{x-y+z}{2}right)=f(x)+f(z)end{equation} in various normed spaces. the concept of hyers-ulam-rassias stability originated from th. m. rassias’ stability theorem t...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید