نتایج جستجو برای: generalized translation dunkl operator
تعداد نتایج: 383353 فیلتر نتایج به سال:
For a family of weight functions, hκ, invariant under a finite reflection group on R, analysis related to the Dunkl transform is carried out for the weighted L spaces. Making use of the generalized translation operator and the weighted convolution, we study the summability of the inverse Dunkl transform, including as examples the Poisson integrals and the Bochner-Riesz means. We also define a m...
For a family of weight functions, hκ, invariant under a finite reflection group on R, analysis related to the Dunkl transform is carried out for the weighted L spaces. Making use of the generalized translation operator and the weighted convolution, we study the summability of the inverse Dunkl transform, including as examples the Poisson integrals and the Bochner-Riesz means. We also define a m...
the aim of this paper is to prove new quantitative uncertainty principle for the generalized fourier transform connected with a dunkl type operator on the real line. more precisely we prove an lp-lq-version of morgan's theorem.
In this paper, using a generalized Dunkl translation operator, we obtain a generalization of Titchmarsh's Theorem for the Dunkl transform for functions satisfying the$(psi,p)$-Lipschitz Dunkl condition in the space $mathrm{L}_{p,alpha}=mathrm{L}^{p}(mathbb{R},|x|^{2alpha+1}dx)$, where $alpha>-frac{1}{2}$.
in this paper, using a generalized translation operator, we prove theestimates for the generalized fourier-bessel transform in the space l2 on certainclasses of functions.
These operators are very important inmathematics and physics. They allow the development of generalized wavelets from generalized continuous classical wavelet analysis. Moreover, we have proved in [2] that the generalized two-scale equation associated with the Dunkl operator has a solution and then we can define continuous multiresolution analysis. Dunkl has proved in [1] that there exists a un...
Using a generalized spherical mean operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the ('; p)-Dunkl Lipschitz condition in the space Lp(Rd;wl(x)dx), 1 < p 6 2, where wl is a weight function invariant under the action of an associated re ection group.
In this paper, several direct and inverse theorems in terms of the best approximations functions moduli smoothness are proved concerning approximation from space $$\mathbb {L}_{2}^{(\alpha ,\beta )}$$ by partial sums Jacobi-Dunkl series. For purpose, we use generalized translation operator which was defined Vinogradov.
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید