نتایج جستجو برای: gradient descent
تعداد نتایج: 137892 فیلتر نتایج به سال:
Based on an eigenvalue analysis, a new proof for the sufficient descent property of the modified Polak-Ribière-Polyak conjugate gradient method proposed by Yu et al. is presented.
This report describes a series of results using the exponentiated gradient descent (EG) method recently proposed by Kivinen and Warmuth. Prior work is extended by comparing speed of learning on a nonstationary problem and on an extension to backpropagation networks. Most signi cantly, we present an extension of the EG method to temporal-di erence and reinforcement learning. This extension is co...
Nesterov's accelerated gradient descent (AGD), an instance of the general family of"momentum methods", provably achieves faster convergence rate than gradient descent (GD) in the convex setting. However, whether these methods are superior to GD in the nonconvex setting remains open. This paper studies a simple variant of AGD, and shows that it escapes saddle points and finds a second-order stat...
We learn recurrent neural network optimizers trained on simple synthetic functions by gradient descent. We show that these learned optimizers exhibit a remarkable degree of transfer in that they can be used to efficiently optimize a broad range of derivative-free black-box functions, including Gaussian process bandits, simple control objectives, global optimization benchmarks and hyper-paramete...
This paper concerns asynchrony in iterative processes, focusing on gradient descent and tatonnement, a fundamental price dynamic. Gradient descent is an important class of iterative algorithms for minimizing convex functions. Classically, gradient descent has been a sequential and synchronous process, although distributed and asynchronous variants have been studied since the 1980s. Coordinate d...
In this paper, two extended three-term conjugate gradient methods based on the Liu-Storey ({tt LS}) conjugate gradient method are presented to solve unconstrained optimization problems. A remarkable property of the proposed methods is that the search direction always satisfies the sufficient descent condition independent of line search method, based on eigenvalue analysis. The globa...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید