نتایج جستجو برای: high angular resolution diffusion imaging hardi
تعداد نتایج: 2697155 فیلتر نتایج به سال:
Introduction: High angular resolution diffusion imaging (HARDI) is a powerful extension of MRI that maps the directional diffusion of water in the brain. With more diffusion gradients and directions, fiber directions may be tracked with greater angular precision, fiber crossings can be resolved, and anisotropy measures can be derived from the full fiber orientation density function. To better r...
Advanced diffusion magnetic resonance imaging (dMRI) techniques, like diffusion spectrum imaging (DSI) and high angular resolution diffusion imaging (HARDI), remain underutilized compared to diffusion tensor imaging because the scan times needed to produce accurate estimations of fiber orientation are significantly longer. To accelerate DSI and HARDI, recent methods from compressed sensing (CS)...
Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. High angular resolution diffusion imaging (HARDI) samples diffusivity at a large number of spherical angles, to better resolve neural fibers that mix or cross. Here, we implemented a framework for advanced mathematical analysis of mouse 5-shell HARDI (b=1000, 3000, 4000, 8000, 12000 s/mm2), al...
High angular resolution diffusion imaging (HARDI) can produce better estimates of fiber orientation and richer sets of features for disease classification than diffusion tensor imaging. However, existing HARDI reconstruction algorithms require a large number of gradient directions, making the acquisition time too long to be clinically viable. State-of-the-art compressed sensing methods can redu...
We develop an algorithm for brain connectivity assessment using geodesics in HARDI (high angular resolution diffusion imaging). We propose to recast the problem of finding fibers bundles and connectivity maps to the calculation of shortest paths on a Riemannian manifold defined from fiber ODFs computed from HARDI measurements. Several experiments on real data show that our method is able to seg...
High angular resolution diffusion imaging (HARDI) has proven to better characterize complex intra-voxel structures compared to its predecessor diffusion tensor imaging (DTI). However, the benefits from the modest acquisition costs and significantly higher signal-to-noise ratios (SNRs) of DTI make it more attractive for use in clinical research. In this work we use contextual information derived...
In Diffusion Tensor Imaging (DTI), differently oriented fiber bundles inside one voxel are incorrectly modeled by a single tensor. High Angular Resolution Diffusion Imaging (HARDI) aims at using more complex models, such as a two-tensor model, for estimating two fiber bundles. We propose a new method for creating experimental phantom data of fiber crossings, by mixing the DWI-signals from high ...
The detection of white matter microstructural changes using diffusion magnetic resonance imaging (dMRI) often involves extracting a small set of scalar features, such as fractional anisotropy (FA) and mean diffusivity (MD) in diffusion tensor imaging (DTI). With the advent of more advanced dMRI techniques, such as high angular resolution diffusion imaging (HARDI), a number of mathematically ins...
In this paper we study the impact of denoising the raw high angular resolution diffusion imaging (HARDI) data with the Non-Local Means filter adapted to Rician noise (NLMr). We first show that NLMr filtering improves robustness of apparent diffusion coefficient (ADC) and orientation distribution function (ODF) reconstructions from synthetic HARDI datasets. Our results suggest that the NLMr filt...
Imaging of water diffusion using magnetic resonance imaging has become an important noninvasive method for probing the white matter connectivity of the human brain for scientific and clinical studies. Current methods, such as diffusion tensor imaging (DTI), high angular resolution diffusion imaging (HARDI) such as q-ball imaging, and diffusion spectrum imaging (DSI), are limited by low spatial ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید