نتایج جستجو برای: hilberts 16th problem

تعداد نتایج: 884250  

Journal: :bulletin of the iranian mathematical society 0
n. nyamoradi h. zangeneh

we consider the number of zeros of the integral $i(h) = oint_{gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. we prove that the number of zeros of $i(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.

2007
H. KOBER

LEMMA L 1 When Kp< oo, then &fis a continuous (bounded) linear transformation with both domain and range Lp( — <*> , oo ), and § 2 / = — ƒ. LEMMA 2. Whenf(t)ÇzLi(— <*>, oo), then §ƒ exists for almost all x in ( — oo , co ), but does not necessarily belong to Li(a, b), where a, b are arbitrary numbers(— oo ^a<b^ oo) ; however (l+x)~\ &f\ÇzLi(— oo , co) when 0<q<l. When f and ^f belong to Li(— oo...

Journal: :I. J. Bifurcation and Chaos 2012
Pei Yu Maoan Han

The well-known Hilbert’s 16th problem has remained unsolved since Hilbert proposed the 23 mathematical problems at the Second International Congress of Mathematics in 1900 [Hilbert, 1902]. Recently, a modern version of the second part of the 16th problem was formulated by Smale [1998], chosen as one of the 18 challenging mathematical problems for the 21st century. To be more specific, consider ...

Journal: :Journal of Differential Equations 2010

2005
Lubomir Gavrilov Hossein Movasati

We study the analogue of the infinitesimal 16th Hilbert problem in dimension zero. Lower and upper bounds for the number of the zeros of the corresponding Abelian integrals (which are algebraic functions) are found. We study the relation between the vanishing of an Abelian integral I(t) defined over Q and its arithmetic properties. Finally, we give necessary and sufficient conditions for an Abe...

2005
M. BRISKIN

Two classical problems on plane polynomial vector fields, Hilbert’s 16th problem about the maximal number of limit cycles in such a system and Poincaré’s center-focus problem about conditions for all trajectories around a critical point to be closed, can be naturally reformulated for the Abel differential equation y′ = p(x)y + q(x)y. Recently, the center conditions for the Abel equation have be...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید