نتایج جستجو برای: hypocotyl

تعداد نتایج: 2455  

Journal: :Plant physiology 1998
T Kurata K T Yamamoto

The hypocotyl of Arabidopsis is well suited for the analysis of cell elongation because it elongates without cell division. We have isolated a new class of recessive mutants, petit1 (pet1), which are defective in aspects of hypocotyl elongation. The short-hypocotyl phenotype of pet1 is caused by shortened cells. The cells of the elongation zone of the hypocotyl are often deformed. pet1 also sho...

Journal: :Development 1996
T Desnos V Orbović C Bellini J Kronenberger M Caboche J Traas H Höfte

Plant morphogenesis is dependent on a tight control of cell division and expansion. Cell elongation during post-embryonic hypocotyl growth is under the control of a light-regulated developmental switch. Light is generally believed to exert its effects on hypocotyl elongation through a phytochrome-and blue-light receptor-mediated inhibitory action on a so far unknown cell elongation mechanism. W...

Journal: :Plant physiology 2008
Shikha Bhatia Sreeramaiah N Gangappa Ritu Kushwaha Snehangshu Kundu Sudip Chattopadhyay

Light is an important factor for plant growth and development. We have identified and functionally characterized a regulatory gene SHORT HYPOCOTYL IN WHITE LIGHT1 (SHW1) involved in Arabidopsis (Arabidopsis thaliana) seedling development. SHW1 encodes a unique serine-arginine-aspartate-rich protein, which is constitutively localized in the nucleus of hypocotyl cells. Transgenic analyses have re...

Journal: :The Plant cell 1991
E. Liscum R. P. Hangarter

We have isolated a new class of photomorphogenic mutants in Arabidopsis. Hypocotyl elongation is not inhibited in the mutant seedlings by continuous blue light but is inhibited by far red light, indicating that these mutations are phenotypically different from the previously isolated long hypocotyl (hy) mutants. Complementation analysis indicated that recessive nuclear mutations at three geneti...

2013
Xiaomin Liu Tao Qin Qianqian Ma Jingbo Sun Ziqiang Liu Ming Yuan Tonglin Mao

Light significantly inhibits hypocotyl cell elongation, and dark-grown seedlings exhibit elongated, etiolated hypocotyls. Microtubule regulatory proteins function as positive or negative regulators that mediate hypocotyl cell elongation by altering microtubule organization. However, it remains unclear how plants coordinate these regulators to promote hypocotyl growth in darkness and inhibit gro...

Journal: :The Plant cell 2011
Jiejie Li Xianling Wang Tao Qin Yan Zhang Xiaomin Liu Jingbo Sun Yuan Zhou Lei Zhu Ziding Zhang Ming Yuan Tonglin Mao

The regulation of hypocotyl elongation is important for plant growth. Microtubules play a crucial role during hypocotyl cell elongation. However, the molecular mechanism underlying this process is not well understood. In this study, we describe a novel Arabidopsis thaliana microtubule-destabilizing protein 25 (MDP25) as a negative regulator of hypocotyl cell elongation. We found that MDP25 dire...

Journal: :Plant physiology 2014
Elise K Van Buskirk Amit K Reddy Akira Nagatani Meng Chen

Photobody localization of Arabidopsis (Arabidopsis thaliana) phytochrome B (phyB) fused to green fluorescent protein (PBG) correlates closely with the photoinhibition of hypocotyl elongation. However, the amino-terminal half of phyB fused to green fluorescent protein (NGB) is hypersensitive to light despite its inability to localize to photobodies. Therefore, the significance of photobodies in ...

2002
Emmanuel Liscum

We have isolated a new class of photomorphogenic mutants in Arabidopsis. Hypocotyl elongation is not inhibited in the mutant seedlings by continuous blue light but is inhibited by far red light, indicating that these mutations are phenotypically different from the previously isolated long hypocotyl (hy) mutants. Complementation analysis indicated that recessive nuclear mutations at three geneti...

Journal: :Plant & cell physiology 2012
Chi-Chien Chen Shih-Feng Fu Yung-I Lee Chung-Yi Lin Wan-Chen Lin Hao-Jen Huang

Callus-forming capacity is enhanced with hypocotyl maturity in Arabidopsis. However, the genetic regulation of age-related gain in capacity for callus formation is unclear. We used a gene expression microarray assay to characterize the underlying mechanisms during callus formation in young and mature hypocotyl explants of Arabidopsis. As expected, genes involved in photosynthesis and cell wall ...

Journal: :The Plant cell 2013
Xiaomin Liu Tao Qin Qianqian Ma Jingbo Sun Ziqiang Liu Ming Yuan Tonglin Mao

Light significantly inhibits hypocotyl cell elongation, and dark-grown seedlings exhibit elongated, etiolated hypocotyls. Microtubule regulatory proteins function as positive or negative regulators that mediate hypocotyl cell elongation by altering microtubule organization. However, it remains unclear how plants coordinate these regulators to promote hypocotyl growth in darkness and inhibit gro...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید