نتایج جستجو برای: joint matrix numerical range
تعداد نتایج: 1457078 فیلتر نتایج به سال:
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
For any n×n matrix A , we use the joint higher rank numerical range, Λk(A, . . . ,Am) , to define the higher rank numerical hull of A . We characterize the higher rank numerical hulls of Hermitian matrices. Also, the higher rank numerical hulls of unitary matrices are studied. Mathematics subject classification (2010): 15A60,81P68.
It is shown that for $n \le 3$ the joint numerical range of a family commuting $n\times n$ complex matrices always convex; \ge 4$ there are two whose not convex.
We consider linearly independent families of Hermitian matrices {A1, . . . , Am} so thatWk(A) is convex. It is shown that m can reach the upper bound 2k(n− k) + 1. A key idea in our study is relating the convexity of Wk(A) to the problem of constructing rank k orthogonal projections under linear constraints determined by A. The techniques are extended to study the convexity of other generalized...
let x be an n-square complex matrix with the cartesian decomposition x = a + i b, where a and b are n times n hermitian matrices. it is known that $vert x vert_p^2 leq 2(vert a vert_p^2 + vert b vert_p^2)$, where $p geq 2$ and $vert . vert_p$ is the schatten p-norm. in this paper, this inequality and some of its improvements ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید