نتایج جستجو برای: kcne2 gene
تعداد نتایج: 1141429 فیلتر نتایج به سال:
BACKGROUND Sudden cardiac death (SCD) is the leading global cause of mortality, exhibiting increased incidence in patients with diabetes mellitus. Ion channel gene perturbations provide a well-established ventricular arrhythmogenic substrate for SCD. However, most arrhythmia-susceptibility genes, including the KCNE2 K(+) channel β subunit, are expressed in multiple tissues, suggesting potential...
AIM KCNE2 encodes for the potassium voltage-gated channel, KCNE2. Mutations in KCNE2 have been associated with long-QT syndrome (LQTS). While KCNE2 has been extensively studied, the functions of its C-terminal domain remain inadequately described. Here, we aimed to elucidate the functions of this domain by identifying its protein interactors using yeast two-hybrid analysis. METHODS The C-term...
BACKGROUND Mutations in KCNE2 have been linked to long-QT syndrome (LQT6), yet KCNE2 protein expression in the ventricle and its functional role in native channels are not clear. METHODS AND RESULTS We detected KCNE2 protein in human, dog, and rat ventricles in Western blot experiments. Immunocytochemistry confirmed KCNE2 protein expression in ventricular myocytes. To explore the functional r...
BACKGROUND The voltage-gated, rapid-delayed rectifier current (I(Kr)) is important for repolarization of the heart, and mutations in the genes coding for the K+-ion channel conducting this current, i.e., KCNH2 for the alpha-subunit HERG and KCNE2 for the beta-subunit MiRP1, cause acquired and congenital long Q-T syndrome (LQTS) and other cardiac arrhythmias. METHODS We developed a robust sing...
Mutations in hERG cause long QT syndrome type 2 which is characterized by a prolonged QT interval on electrocardiogram and predisposition to life-threatening ventricular tachyarrhythmia, syncope, and sudden death. hERG-G572S induces trafficking defects of hERG channel protein from Golgi to the plasma membrane and results in a dominant negative suppression of hERG current density. As an accessor...
Dynamic partnership between KCNQ1 and KCNE1 and influence on cardiac IKs current amplitude by KCNE2.
Cardiac slow delayed rectifier (IKs) channel is composed of KCNQ1 (pore-forming) and KCNE1 (auxiliary) subunits. Although KCNE1 is an obligate IKs component that confers the uniquely slow gating kinetics, KCNE2 is also expressed in human heart. In vitro experiments suggest that KCNE2 can associate with the KCNQ1-KCNE1 complex to suppress the current amplitude without altering the slow gating ki...
Hyperpolarization-activated cation (HCN) channels give rise to an inward current with similar but not identical characteristics compared with the pacemaker current (I(f)), suggesting that HCN channel function is modulated by regulatory beta-subunits in native tissue. KCNE2 has been proposed to serve as a beta-subunit of HCN channels; however, available data remain contradictory. To further clar...
Atrial fibrillation (AF) is a common cardiac arrhythmia whose molecular etiology is poorly understood. We studied a family with hereditary persistent AF and identified the causative mutation (S140G) in the KCNQ1 (KvLQT1) gene on chromosome 11p15.5. The KCNQ1 gene encodes the pore-forming alpha subunit of the cardiac I(Ks) channel (KCNQ1/KCNE1), the KCNQ1/KCNE2 and the KCNQ1/KCNE3 potassium chan...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید