نتایج جستجو برای: knn algorithm
تعداد نتایج: 756003 فیلتر نتایج به سال:
The K-Nearest Neighbor (KNN) join is an expensive but important operation in many data mining algorithms. Several recent applications need to perform KNN join for high dimensional sparse data. Unfortunately, all existing KNN join algorithms are designed for low dimensional data. To fulfill this void, we investigate the KNN join problem for high dimensional sparse data. In this paper, we propose...
The paper contains the comparison between several class prediction methods (the K-Nearest Neighbour (KNN) algorithms and some variations of it) for classification of tumours using gene expression data. The KNN is a traditional classifier that uses a set of attributes for class prediction. Also are considered, the cases when these attributes (for KNN algorithm) are un-weighted (i.e. they all hav...
This paper proposes SV-kNNC, a new algorithm for k-Nearest Neighbor (kNN). This algorithm consists of three steps. First, Support Vector Machines (SVMs) are applied to select some important training data. Then, k-mean clustering is used to assign the weight to each training instance. Finally, unseen examples are classified by kNN. Fourteen datasets from the UCI repository were used to evaluate ...
The enormous growth and usage of social networks offer positive ways to any business by sharing the emotions, feelings and experiences. Web users are benefited with valuable online reviews. To utilize the reviews effectively, researchers are working on necessary methods and ideas such as classification of positive and negative sense of reviews, ranking the facet in the reviews to make the effec...
The problem of k-nearest neighbors (kNN) search is to find nearest k neighbors from a given data set for a query point. To speed up the finding process of nearest k neighbors, many fast kNN search algorithms were proposed. The performance of fast kNN search algorithms is highly influenced by the number of dimensions, number of data points, and data distribution of a data set. In the extreme cas...
Abstract—KNN classification finds k nearest neighbors of a query in training data and then predicts the class of the query as the most frequent one occurring in the neighbors. This is a typical method based on the majority rule. Although majority-rule based methods have widely and successfully been used in real applications, they can be unsuitable to the learning setting of skewed class distr...
With the recent development in mobile computing devices and as the ubiquitous deployment of access points(APs) of Wireless Local Area Networks(WLANs), WLAN based indoor localization systems(WILSs) are of mounting concentration and are becoming more and more prevalent for they do not require additional infrastructure. As to the localization methods in WILSs, for the approaches used to localizati...
Continuously monitoring kNN queries in a highly dynamic environment has become a necessity to many recent location-based applications. In this paper, we study the problem of continuous kNN query on the dataset with an in-memory grid index. We first present a novel data access method – CircularTrip. Then, an efficient CircularTrip-based continuous kNN algorithm is developed. Compared with the ex...
In pattern recognition, a kind of classical classifier called k-nearest neighbor rule (kNN) has been applied to many real-life problems because of its good performance and simple algorithm. In kNN, a test sample is classified by a majority vote of its k-closest training samples. This approach has the following advantages: (1) It was proved that the error rate of kNN approaches the Bayes error w...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید